Journals →  Chernye Metally →  2023 →  #7 →  Back

Metal Forming
ArticleName Assessment of contact-fatigue damage to rails at various degrees of wear
DOI 10.17580/chm.2023.07.07
ArticleAuthor V. Yu. Konyukhov
ArticleAuthorData

Irkutsk National Research Technical University, Irkutsk, Russia:

V. Yu. Konyukhov, Cand. Eng., Associate Prof., Dept. of Automation and Control, e-mail: konyukhov_vyu@mail.ru

Abstract

Rolling contact fatigue is a common cause of rail failure due to repetitive stresses at the point of contact of the wheel with the rail. This phenomenon is a real problem that greatly affects the safety of train traffic. The tasks of preventive and corrective maintenance have a great impact on the life cycle cost of rail operation, and therefore advanced strategies based on forecasting functions are needed to reduce it. This requires a comprehensive assessment of defects of contact fatigue origin using modern research methods. In this paper, the microstructure of the metal surface layer and the mechanical properties of the metal of the rail head after various operating conditions are investigated. The analysis of the shape and size of defects of contact fatigue damage is carried out.

keywords Rail steel, pearlitic steel, contact fatigue strength, fracture, wear, cracks, stress, deformation
References

1. Shur E. A. Damage to rails. Moscow : Intekst, 2012. 192 p.
2. Zakharov S. M. Generalization of the world experience of heavy traffic in the field of wheels, rails and their interaction. Zheleznye dorogi mira. 2002. No. 8. pp. 9–17.
3. Rodríguez-Arana B., San Emeterio A., Alvarado U., Martínez-Esnaola J. M., Nieto J. Prediction of rolling contact fatigue behavior in rails using crack initiation and growth models along with multibody simulations. Appl. Sci. 2021. Vol. 11. 1026. DOI: 10.3390/app11031026
4. Brouzoulis J., Ekh M. Crack propagation in rails under rolling contact fatigue loading conditions based on material forces. International Journal of Fatigue. 2012. Vol. 45. pp. 98–105.
5. Li Q., Huang X., Huang W. Fatigue property and microstructure deformation behavior of multiphase microstructure in a medium-carbon bainite steel under rolling contact condition. International Journal of Fatigue. 2019. Vol. 125. pp. 381–393.
6. Srivastava J. P., Sarkar P. K., Ranjan V. Effects of thermal load on wheel–rail contacts: A review. Journal of Thermal Stresses. 2016. Vol. 39, Iss. 11. pp. 1389–1418.
7. Larijani N. et al. The effect of anisotropy on crack propagation in pearlitic rail steel. Wear. 2014. Vol. 314, Iss. 1-2. pp. 57–68.
8. Lian Q. et al. Crack propagation behavior in white etching layer on rail steel surface. Engineering Failure Analysis. 2019. Vol. 104. pp. 816–829.
9. Liu J. et al. Study on wear and rolling contact damage mechanism between quenched U75V rail and wheels with different microstructures. Wear. 2023. Vol. 512. 204544.
10. Jun H. K., Lee D. H., Kim D. S. Calculation of minimum crack size for growth under rolling contact between wheel and rail. Wear. 2015. Vol. 344-345. pp. 46–57.
11. Christodoulou P. I., Kermanidis A. T., Haidemenopoulos G. N. Fatigue and fracture behavior of pearlitic Grade 900A steel used in railway applications. Theoretical and Applied Fracture Mechanics. 2016. Vol. 83. pp. 51–59.
12. Masoumi M., Echeverri E. A. A., Tschiptschin A. et al. Improvement of wear resistance in a pearlitic rail steel via quenching and partitioning processing. Scientific Reports. 2019. Vol. 9. 7454. DOI: 10.1038/s41598-019-43623-7
13. Shur E. A., Borts A. I., Sukhov A. V., Abdurashitov A. Yu., Bazanova L. V., Zagranichek K. L. Evolution of damage to rails by contact fatigue defects. Vestnik nauchno-issledovatelskogo instituta zheleznodorozhnogo transporta. 2015. No. 3. pp. 3–9.
14. Tsvigun V. N., Shur E. A., Kuznetsov V. N., Koinov R. S. Study of the mechanisms of contact and fatigue defects in rails. Novokuznetsk : SibGIU. 2017. 133 p.
15. Gromov V. E., Peregudov O. A., Ivanov Yu. F., Morozov K. V., Alsaraeva K. V. Evolution of the structure and properties of the surface layer of rails during long-term operation. Voprosy materialovedeniya. 2015. No. 3. pp. 30–38.
16. Kolosov A. D. et al. Comparative evaluation of austenite grain in high-strength rail steel during welding, thermal processing and plasma surface hardening. IOP Conf. Ser.: Mater. Sci. Eng. 2019. Vol. 560. 012185. DOI: 10.1088/1757-899X/560/1/012185
17. Konstantinova M. V. et al. Application of plasma surface quenching to reduce rail side wear. IOP Conf. Ser.: Mater. Sci. Eng. 2019. Vol. 560. 012146. DOI: 10.1088/1757-899X/560/1/012146
18. Balanovsky A. E. et al. Comparative analysis of structural state of welded joints rails using method of Barkhausen effect and ultrasound. J. Phys.: Conf. Ser. 2018. Vol. 1118. 012006. DOI: 10.1088/1742-6596/1118/1/012006
19. Khvostik M. Yu., Khromov I. V., Bykova O. A., Beresten G. A. Analysis of the state of the working surface of rails of experimental batches on the Experimental Ring of JSC VNIIZhT. Vestnik nauchno-issledovatelskogo instituta zheleznodorozhnogo transporta. 2018. No. 77 (3). pp. 141–148. DOI: 10.21780/2223-9731-2018-77-3-141-148
20. Instruction “Rail Defects. Classification, catalog and parameters of flawed and defective rails.” Available at: https://www.tdesant.ru/info/item/144 (accessed 04.05.2023).
21. GOST R 51685–2013. Railway rails. General specifications. Introduced: 01.07.2014.
22. Curd M. E. et al. The heterogenous distribution of white etching matter (WEM) around subsurface cracks in bearing steels. Acta Materialia. 2019. Vol. 174. pp. 300–309.
23. Yin H. et al. Rolling contact fatigue-related microstructural alterations in bearing steels: A Brief Review. Metals. 2022. Vol. 12. Iss. 6. 910.
24. Mayweg D. et al. Correlation between grain size and carbon content in white etching areas in bearings. Acta Materialia. 2021. Vol. 215. p. 117048.
25. Šmeļova V. et al. Electron microscopy investigations of microstructural alterations due to classical Rolling Contact Fatigue (RCF) in martensitic AISI 52100 bearing steel. International Journal of Fatigue. 2017. Vol. 98. pp. 142–154.
26. Baumann G., Fecht H. J., Liebelt S. Formation of white-etching layers on rail treads. Wear. 1996. Vol. 191 (1–2). pp. 133–140. DOI: 10.1016/0043-1648(95)06733-7
27. Balanovskii A. E., Van Huy V. Estimation of wear resistance of plasma-carburized steel surface in conditions of abrasive wear. J. Frict. Wear. 2018. Vol. 39. pp. 311–318. DOI: 10.3103/S1068366618040025
28. Balanovskiy A., Shtayger M., Karlina A., Kargapoltsev S., Gozbenko V., Karlina Yu., Govorkov A., Kuznetsov B. Surface hardening of structural steel by cathode spot of welding arc. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 560. 012138. DOI: 10.1088/1757-899X/560/1/012138
29. Gromov V. E., Aksenova K. V., Ivanov Yu. F., Kuznetsov R. V., Kormyshev V. E. Transformation of the fine structure of lamellar perlite during deformation of rail steel. Izvestiya vuzov. Chernaya metallurgiya. 2023 No. 66 (1). pp. 50–56.
30. Yuriev A. A., Gromov V. E. et al. Structure and properties lengthy rails after extreme long term operation. Materials Research Forum LLC. 2021. 194 p.
31. Aksenova K., Gromov V., Ivanov Y., Qin R., Vashchuk E. Structural phase transformation of rail steel in compression. Metals. 2022. Vol. 12, Iss. 11. 1985.
32. GOST 9454–78. Metals. Method for testing the impact strength at low, room and high temperature. Introduced: 01.01.1979.
33. GOST 10243–75. Steel. Methods of tests and evaluation of macrostructure. Introduced: 01.01.1978.
34. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.

Language of full-text russian
Full content Buy
Back