Журналы →  Chernye Metally →  2023 →  №8 →  Назад

NEW DEVELOPMENTS OF THE MENDELEEV UNIVERSITY OF CHEMICAL TECHNOLOGY OF RUSSIA FOR METALLURGY
Coating and Corrosion Protection
Название Study of corrosion resistance of additionally alloyed nickel-containing austenitic steels and alloys in concentrated sulfuric acid
DOI 10.17580/chm.2023.08.08
Автор S. E. Zolotukhin, A. Yu. Kurbatov, V. N. Grunsky, Yu. M. Averina
Информация об авторе

Mendeleev University of Chemical Technology of Russia, Moscow, Russia:

S. E. Zolotukhin, Cand. Eng., Associate Prof., Dept. of General Chemical Technology, e-mail: zolotukhin.s.e@muctr.ru
A. Yu. Kurbatov, Cand. Eng., Associate Prof., Dept. of Innovative Materials and Corrosion Protection, e-mail: kurbatov.a.i@muctr.ru
V. N. Grunsky, Dr. Eng., Prof., Dept. of General Chemical Technology
Yu. M. Averina, Cand. Eng., Associate Prof., Dept. of Innovative Materials and Corrosion Protection

Реферат

A lot of works are devoted to the protection of technological equipment operating in aggressive environments. The production of sulfuric acid by the double contact - double absorption method dictates the most stringent requirements for the quality and durability of tanks, pipelines and other components, due to their operation in extremely harsh conditions (hot sulfuric acid). To increase the service life and reliability of equipment, austenitic steels and nickel-containing alloys are used. The issue of studying the processes of their corrosion in the assimilation of production is an extremely urgent task. As part of the work, an assessment was made of the corrosion resistance of nickel-containing steel and nickel-based alloys in relation to hot sulfuric acid under conditions simulating the process of removing the heat of absorption of sulfur trioxide by sulfuric acid. It has been proven that the additional introduction of silicon compounds into the composition of austenitic steels can significantly increase the corrosion resistance of the steel, primarily due to the formation of austenite-feritic structures. The positive effect of silicon compounds was noted for all ranges of the studied parameters. A similar effect is given by additives of copper, molybdenum and manganese. The effect of silicon addition for nickel alloys is most noticeable when using the material in the zone of high temperatures and sulfuric acid concentrations, while the overall corrosion rate for both alloys and austenitic steels was quite close, which led to the conclusion that the use of more expensive nickel-containing alloys is inappropriate. The data obtained as a result of the experiment on the corrosion rate of various materials can be used directly in production to calculate the operating time of the equipment and timely take the equipment out for repair or maintenance.
The researches were carried out using D. Mendeleev Center for collective use of scientific equipment, within the framework of the project No. 075-15-2021-688.

Ключевые слова Corrosion of metals, hot sulfuric acid, chemical corrosion, equipment, austenitic steels, nickel alloys
Библиографический список

1. Kurbatov A., Kuzin E., Vetrova M., Sitnikov I., Sitnikov A. Technology of non-reagent water treatment of natural fresh waters for the technological needs of metallurgical enterprises. Conference proceeding METAL 2021 30th International Conference on Metallurgy and Materials proceedings. Ostrava, 2021. pp. 127–132. DOI: 10.37904/metal.2021.4077
2. Maltseva G. N. Corrosion and protection of equipment against corrosion: tutorial. Penza : Izdatelstvo Penzenskogo gosudarstvennogo universiteta, 2000. 55 p.
3. Krasnaya E. G., Tarantseva K. R., Firsova O. V. Evaluation of environmental damage due to corrosion damage to equipment. Youth. Science. Innovations: Collection of articles of the XI International scientific-practical Internet conference. Penza : Penza State University of Technology, 2015. 4 p.
4. Kuzin E. N., Averina Yu. M., Kurbatov A. Yu., Sakharov P. A. Technology of non-reagent deferrization of artesian water for the needs of recycling water supply of metallurgical enterprises. Chernye Metally. 2020. No. 10. pp. 66–71.
5. Hagarová M., Cervová J., Vojtko M. Corrosion degradation of steel pipes in indirect cooling circuit of gas cleaning. Materials Science Forum. 2014. Vol. 811. pp. 41–48. DOI: 10.4028/www.scientific.net/ms
6. Obot I. B., Meroufel A., Onyeachu I. B., Alenazi A., Sorour A. A. Corrosion inhibitors for acid cleaning of desalination heat exchangers: Progress, challenges and future perspectives. Journal of Molecular Liquids. 2019. Vol. 296. 111760. DOI: 10.1016/j.molliq.2019.111760
7. Jaralla A. A., Al-Darbi M. M. Developing new innovative descaling and corrosion inhibiting solutions to protect steel equipment in the oil and gas industry. 13th International Conference of Fracture, 16–21 June, 2013. Beijing, China. pp. 797–805.
8. Hodgkiess T., Al-Omari K. H., Bontems N., Lesiak B. Acid cleaning of thermal desalination plant: do we need to use corrosion inhibitors. Desalination. 2005. Vol. 183. pp. 209–216.
9. Podoprigora A. A. Investigation of corrosion damage of oil pipeline surfaces after long-term operation. Vestnik Yugorskogo gosudarstvennogo universiteta. 2011. No. 4 (23). pp. 105–112.
10. Rakhimov R. Kh., Ermakov V. P., Rakhimov M. R., Rashidov Kh. K., Latipov R. N., Rashidov Zh. Kh. Ensuring the safety of sulfuric acid storage. Computational nanotechnology. 2016. No. 3. pp. 183–195.
11. Nesic S., Sun W. Corrosion in acid gas solutions. Shreir’s Corrosion. 2010. Vol. 2. pp. 1270–1298. DOI: 10.1016/b978-044452787-5.00055-x
12. Kittel J., Fleury E., Vuillemin B., Gonzalez S. et al. Corrosion in alkanolamine used for acid gas removal: From natural gas processing to CO2 capture. Materials and Corrosion. 2010. Vol. 47, Iss. 3. pp. 223–230. DOI: 10.1002/maco.201005847
13. Choudhary L., Wang W., Alfantazi A. Electrochemical corrosion of stainless steel in thiosulfate solutions relevant to gold leaching. Metallurgical and Materials Transactions A. 2015. Vol. 47, Iss. 1. pp. 314–325. DOI: 10.1007/s11661-015-3202-z
14. Liu J., Alfantazi A., Asselin E. A new method to improve the corrosion resistance of titanium for hydrometallurgical applications. Applied Surface Science. 2015. Vol. 332. pp. 480–487. DOI: 10.1016/j.apsusc.2015.01.140
15. Grauman J. S., Tony S. Titanium for hydrometallurgical extraction equipment. Advanced Materials & Processes. 2000. Vol. 157, Iss. 3. pp. 25–29.
16. Singh H., Kumar S., Kumar R. Overview of corrosion and its control: a critical review. Proceedings on Engineering Sciences. 2021. Vol. 3, Iss. 1. pp. 13–24.
17. Akhtar Javed. A review on corrosion protection of iron and steel. Recent Patents on Corrosion Science. 2013. Vol. 3, Iss. 2. pp. 79–147. DOI: 10.2174/22106839113036660008
18. Qian Y., Li Y., Jungwirth S., Seely N. et al. The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: a review. Int. J. Electrochem. Sci. 2015. Vol. 10. pp. 10756–10780.
19. Cicek V. Corrosion engineering and cathodic protection handbook: With extensive question and answer section. Massachusetts : John Wiley & Sons. 2017. 768 p.
20. Abrashov A. A., Grigoryan N. S., Vagramyan T. A., Zhukov A. F., Zhukov A. P. Development of a process for applying cerium-containing protective coatings to alloy steel. Protection of Metals and Physical Chemistry of Surfaces. 2020. Vol. 56, Iss. 7. pp. 1311–1314. DOI: 10.1134/S2070205120070023
21. Abrashov A. A., Grigoryan N. S., Vagramyan T. A., Shcherbina E. A. Durable light-absorbing coatings for structural steels. CIS Iron and Steel Review. 2020. Vol. 19. pp. 71–74.
22. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of pseudo-brookite phase. Obogashchenie Rud. 2021. No. 3. pp. 33–38.
23. Liu J., Alfantazi A., Asselin E. Influence of cupric, ferric, and chloride on the corrosion of titanium in sulfuric acid solutions up to 85 °C. Corrosion. 2014. Vol. 70, Iss. 1. pp. 9–37. DOI: 10.5006/0963
24. Bazyleva O. A., Arginbaeva E. G., Lutskaya S. A. Methods for improving the corrosion resistance of heat-resistant nickel alloys (review). Trudy VIAM. 2018. No. 4 (64). pp. 3–8.
25. Kondratiev V. B. Global market of rare earth metals. Gornaya promyshlennost. 2017. No. 4 (134). pp. 48–54.
26. Li Y., Ives M., Coley K., Rodda J. Corrosion of nickel-containing stainless steel in concentrated sulphuric acid. Corrosion Science. 2004. Vol. 46, Iss. 8. pp. 1969–1979. DOI: 10.1016/j.corsci.2003.10.017
27. Jones S. A., Coley K. S., Kish J. R., Hoyt J. J. Corrosion of nickel-containing stainless-steel in concentrated sulfuric acid: potential oscillations predicted by combination of kinetic phenomena. Journal of the Electrochemical Society. 2013. Vol. 160, Iss. 8. pp. 326–335. DOI: 10.1149/2.027308jes
28. Chang J. H., Chou J. M., Hsieh R. I. et al. Corrosion behaviour of vacuum induction-melted Ni-based alloy in sulphuric acid. Corrosion Science. 2010. Vol. 52, Iss. 7. pp. 2323–2330.
29. Perelygin Yu. P., Los I. S., Kireev S. Yu. Corrosion and protection of metals against corrosion: textbook. for students of technical specialties. 2nd edition enlarged. Penza : Izdatelstvo PGU, 2015. 88 p.
30. Tomashov N. D., Chernova G. P. Corrosion and corrosion-resistant alloys. Series. Advances in modern metallurgy. Moscow: Metallurgiya, 1973. 223 p.
31. McAlister D. R., Corey A. G., Ewing L. J. Economically recovering sulphiric acid heat. Chem. Eng. Progr. 1986. Vol. 82. pp. 34–38.
32. Amelin A. G., Semenov G. M., Zolotukhin S. E. et al. Method for obtaining sulfuric acid from hydrogen sulfide. USSR copyright certificate, No. 119800 dated from 15.12.1985.
33. Vera-Kasteneda E. Recovery of sulfur trioxide heat of absorption. Patent RF, No. 0002672113. Applied: 21.04.2017. Published: 12.11.2018.
34. GOST 5632–2014. Stainless steels and corrosion-resisting, heat-resistanting and creep resisting alloys. Grades. Introduced: 01.01.2015.
35. Kuzin E. N. Application of the method of atomic emission spectroscopy with microwave (magnetic) plasma in the processes of identifying the chemical composition of steelmaking waste. Chernye Metally. 2022. No. 10. pp. 79–82.
36. Kuzin E. N., Kruchinina N. E. Use of metallurgical scale in the processes of engineering protection of the environment. CIS Iron and Steel Review. 2022. Vol. 24. pp. 93–97. DOI: 10.17580/cisisr.2022.02.15
37. Tavadze F. I. Effect of alloying with silicon on the corrosion resistance of 00Kh18N20S3M3D3B steel in sulfuric acid. Zashchita metallov. 1967. Vol. 2. No. 4. p. 450.
38. Lutsenko A. N., Slavin A. V., Erasov V. S. et al. Strength testing and examination of the aircraft materials. Aircraft materials and technologies. 2017. No. S. pp. 527-546.
39. Plaskeev A. V. The role of alloying components (Cr, Mo and others) in the processes of dissolution and passivation of alloys based on iron: Dissertation … of Candidate of Chemical Sciences. Karpov Institute of Physical Chemistry. 1989. 248 p.
40. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
41. GOST 5949–75. Sorted and gauged corrosion-resistant, heat-resistant and high-temperature steel. Introduced: 01.01.1977.
42. Chukin M. V., Poletskov P. P., Nabatchikov D. G., Gushchina M. S., Berezhnaya G. A. Influence of alloying elements on properties of steels at different cooling rates. Kachestvo v obrabotke materialov. 2016. No. 1 (5). pp. 5–8.

Language of full-text русский
Полный текст статьи Получить
Назад