ArticleName |
On stronger particle adhesion to a bubble
in a pulsating liquid flow |
References |
1. Bogdanov O. S., Maksimov I. I., Podnek A. K., Yanis N. A. Theory and technology of ore flotation. 2^{nd} ed. Moscow: Nedra, 1990. 363 p.
2. Maksimov I. I. Basic patterns of flotation of particles of various sizes and their use to increase the extraction of useful components from ores. Dissertation for the degree of Doctor of Engineering Sciences. Leningrad, 1984. 3. Abramov A. A. Flotation methods of beneficiation. Мoscow: Gornaya Kniga, 2016. 595 p. 4. Maksimov I. I., Emelyanov M. F. Influence of turbulence on the process of separation of particles from bubbles in flotation pulp. Obogashchenie Rud. 1983. No. 2. pp. 16–19. 5. Shadrin A.V. Increasing the beneficiation of non-ferrous metal ores based on the development of new foaming agents and the study of the features of their action. Dissertation for the degree of Candidate of Engineering Sciences. Leningrad, 1985. 6. Melik-Gaikazyan V. I. Investigation of the mechanism of hardening of the contact between a bubble and a carbon particle by an apolar reagent. Doklady Akademii Nauk SSSR. 1961. Vol. 136, No. 6. pp. 1403–1406. 7. Melik-Gaikazyan V. I., Emelyanova N. P., Glazunova Z. I. On the capillary mechanism of strengthening the particle–bubble contact during froth flotation. Obogashchenie Rud. 1976. No. 1. pp. 25–31. 8. Melik-Gaikazyan V. I., Emelyanova N. P., Kozlov P. S., Yushina T. I., Lipnaya E. N. Investigation of froth flotation and selection of reagents on the basis of the mechanism of their effect. Report 1. Substantiation of the selected methods for investigation of the process. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2009. No. 2. pp. 7–18. 9. Melik-Gaykazyan V. I., Abramov A. A., Rubinshtein Yu. B., Avdokhin V. M., Solozhenkin P. M. Methods for studying the flotation process. Мoscow: Nedra, 1990. 301 p. 10. Shakhmatov S. S. On the influence of turbulent pulp flows on the safety of flotation complexes. Current state and prospects for the development of flotation theory. Мoscow: Nauka, 1979. pp. 186–191. 11. Lavrinenko A. A. On the formation and preservation of the particle–bubble complex during flotation. Improving the processing of mineral raw materials. Мoscow: IPCON of the USSR Academy of Sciences, 1994. pp. 27–35. 12. Lavrinenko A. A. Development of the theory of the pneumopulsation flotation process and the creation of highperformance column apparatus. Dissertation for the degree of Doctor of Engineering Sciences. Мoscow, 2005. 421 p. 13. Patnaik N., Menon A., Gupta T., Joshi V. V. Dynamics of bubble–particle interaction in different flotation processes and applications — a review of recent studies. Physicochemical Problems of Mineral Processing. 2020. Vol. 56, Iss. 6. pp. 206–224. 14. Meshcheryakov N. F. Flotation machines. Мoscow: Nedra, 1972. 248 p. 15. Dimitrov J., Dedelyanova K. Mathematical modeling of elementary act flotation in vibratory column flotation machine. 24^{th} International mining congress and exhibition of Turkey – IMCET'15. Antalia, Turkey, April 14–17, 2015. pp. 1242–1245. 16. Ksenofontov B. S., Ivanov M. V., Gevorkyan R. E. Sewage treatment by flotation with use of vibrating influence. Bezopasnost' Zhiznedeyatelnosti. 2011. No. 9. pp. 32–37. 17. Ivanov M. V. Vibroresonance technology of industrial wastewater treatment. Dissertation for the degree of Doctor of Engineering Sciences. Мoscow, 2018. 404 p. 18. Jin L., Wang W., Tu Y., Zhang K., Lv Z. Effect of ultrasonic standing waves on flotation bubbles. Ultrasonics Sonochemistry. 2021. Vol. 73. DOI: 10.1016/j.ultsonch.2020.105459 19. Kapitsa P. L. Dynamic stability of a pendulum with an oscillating suspension point. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki. 1951. Vol. 21, Iss. 5. pp. 588–597. 20. Blekhman I. I. Vibrational mechanics. Nonlinear dynamic effects, general approach, applications. Singapore et al.: World Scientific Publishing, 2000. 509 p. 21. Blekhman I. I. Vibrational mechanics and vibrational rheology (theory and applications). Moscow: Fizmatlit. 2018. 752 p. 22. Blekhman I. I., Blekhman L. I., Vasilkov V. B., Sorokin V. S., Yakimova K. S. Motion of gas bubble in oscillating gas-saturated liquid. Obogashchenie Rud. 2011. No. 5. pp. 30–37. 23. Morozov N. F., Tovstik P. E., Tovstik T. M., Belyaev A. K., Tovstik T. P. Attraction basins in the generalized Kapitsa problem. Doklady Akademii Nauk. 2019. Vol. 487, No. 5. pp. 502–506. 24. Belyaev A. K., Tovstik T. P., Morozov N. F., Tovstik P. E., Tovstik T. M. Classical Kapitza's problem of stability of an inverted pendulum and some generalizations. Acta Mechanica. 2021. Vol. 232, Iss. 5. pp. 1743–1757. 25. Babenko A. V., Polyakova O. R., Tovstik T. P. Conceptual generalizations of the Kapitsa problem. Advanced structured materials. Progress in continuum mechanics. Springer, 2023. Chap. 4. pp. 47–64. 26. Markeev A. P. On the dynamics of a spherical pendulum with a vibrating suspension. Prikladnaya Matematika i Mekhanika. 1999. Vol. 63, No. 2. pp. 213–219. 27. Smirnov A. S., Smolnikov B. A. Mechanics of a spherical pendulum. St. Petersburg: Polytekh-Press, 2019. 266 p. 28. Apffel B., Novkoski F., Eddi A., Fort E. Floating under a levitating liquid. Nature. 2020. Vol. 585. pp. 48–52. 29. Sorokin V., Blekhman I. I. Vibration overcomes gravity on a levitating fluid. Nature. 2020. Vol. 585. pp. 31–32. 30. Landa P. S. Nonlinear oscillations and waves. Мoscow: URSS, 2022. 552 p. 31. Andrievsky B. R., Fradkov A. L. Control of chaos: Methods and applications. I. Methods. Avtomatika i Telemekhanika. 2003. No. 5. pp. 3–45. 32. Andrievsky B. R., Fradkov A. L. Control of chaos: Methods and applications. II. Applications. Avtomatika i Telemekhanika. 2004. No. 4. pp. 3–34. |