Journals →  Черные металлы →  2023 →  #9 →  Back

100 лет кафедре «Обработка металлов давлением» Уральского федерального университета
ArticleName Исследование напряженно-деформированного состояния на границе между материалами при прокатке слоистого композита
DOI 10.17580/chm.2023.09.06
ArticleAuthor Д. Р. Салихянов
ArticleAuthorData

Институт машиноведения Уральского отделения РАН, Екатеринбург, Россия1 ; Уральский федеральный университет имени первого Президента России Б. Н. Ельцина, Екатеринбург, Россия2:

Д. Р. Салихянов, научный сотрудник1, доцент Института новых материалов и технологий2, канд. техн. наук,
эл. почта: salenhall@gmail.com

Abstract

Выполнена оценка напряженно-деформированного состояния на межслойной границе в зависимости от наиболее значимых технологических факторов — сочетания материалов и режима прокатки. При помощи моделирования методом конечных элементов исследованы показатель пластичности и интенсивность деформации в зависимости от отношения прочностных характеристик твердой и мягкой составляющей композита и распределения обжатий по проходам при прокатке. Выявленные зависимости демонстрируют тенденцию, определяющую благоприятные условия для соединения материалов. 

Исследование выполнено за счет гранта Российского научного фонда № 22-29-20243 «Мультимасштабное моделирование процессов соединения разнородных материалов пластической деформацией» при поддержке правительства Свердловской области.

keywords Слоистые металлические композиты, совместная деформация, холодная соединительная прокатка, межслойная граница, соединение разнородных материалов, пластическая деформация, конечно-элементное моделирование
References

1. Bogatov A., Salikhyanov D. Development of bonding mechanisms for different materials during forming // Metallurgist. 2017. Vol. 60, Iss. 11–12. P. 1175–1179.
2. Akdesir M., Zhou D., Foadian F., Palkowski H. Study of different surface pre-treatment methods on bonding strength of multilayer aluminum alloys/steel clad material // International Journal of Engineering Research & Science. 2016. Vol. 2, Iss. 1. P. 169–177.
3. Movahedi M., Kokabi A. H., Seyed Reihani S. M. Investigation on the bond strength of Al-1100/St-12 roll bonded sheets, optimization and characterization // Materials and Design. 2011. Vol. 32. P. 3143–3149.
4. Lee J.-S., Son H.-T., Lee K.-Y. et al. Characterization of Mg–Al sheet clad materials fabricated by hot rolling // Advanced Materials Research. 2007. Vol. 26–28. P. 409–412.
5. Pesin A., Pustovoitov D., Biryukova O., Ilyina N. FEM simulation of fabrication of Al-steel layered composites withmechanical bonding through the interfacial concavo-convex lock effect // Procedia Manufacturing. 2020. Vol. 50. P. 579–583.
6. Jamaati R., Toroghinejad M. R. Cold roll bonding bond strengths: review // Materials Science and Technology. 2011. Vol. 27, Iss. 7. P. 1101–1108. DOI: 10.1179/026708310X12815992418256

7. Salikhyanov D. Contact mechanism between dissimilar materials under plastic deformation // Comptes Rendus Mécanique. 2019. Vol. 347, Iss. 8. P. 588–600.
8. Liu J., Li M., Sheu S. et al. Macro- and micro-surface engineering to improve hot roll bonding of aluminum plate and sheet // Material Science and Engineering A. 2008. Vol. 479. P. 45–57.
9. Mikloweit A., Bambach M., Pietryga M., Hirt G. Development of a testing procedure to determine the bond strength in joining-by-forming processes // Advanced Materials Research. 2014. Vol. 966–967. P. 481–488.
10. Wang A., Ohashi O., Ueno K. Effect of surface asperity on diffusion bonding // Materials Transactions. 2006. Vol. 47. P. 179–184.
11. Bagheri A., Toroghinejad M. R., Taherizadeh A. Effect of roughness and surface hardening on the mechanical properties of three-layered brass/IF steel/brass composite // Trans. Indian. Inst. Met. 2018. Vol. 71, Iss. 9. P. 2199–2210.
12. Zhang W., Bay N. A numerical model for cold welding of metals // CIRP Annals. 1996. Vol. 45, Iss. 1. P. 215–220.
13. Mori R.-I., Bay N., Fratini L. et al. Joining by plastic deformation // CIRP Annals – Manufacturing Technology. 2013. Vol. 62. P. 673–694.
14. Bambach M., Pietryga M., Mikloweit A., Hirt G. A finite element framework for the evolution of bond strength in joining-by-forming processes // Journal of Materials Processing Technology. 2014. Vol. 214, Iss. 10. P. 2156–2168.
15. Liu Z., Kraemer A., Karhausen K. F. et al. A New coupled thermal-stress FE-model for investigating the influence of non-isothermal conditions on bond strength and bonding status of the first pass in roll bonding // Key Engineering Materials. 2018. Vol. 767. P. 301–308.
16. Khaledi K., Rezaei S., Wulfinghoff S., Reese S. Modeling of joining by plastic deformation using a bonding interface finite element // International Journal of Solids and Structures. 2019. Vol. 160. P. 68–79.
17. Yu H., Tieu A. K., Lu C. A deformation mechanism of hard metal surrounded by soft metal during roll forming // Scientific Reports. 2014. Vol. 4. 5017.
18. Li L., Nagai K., Yin F. Progress in cold roll bonding of metals // Science and Technology of Advanced Materials. 2008. Vol. 9. 023001.
19. Le H. R., Sutcliffe M. P. F., Wang P. Z., Burstein G. T. Surface oxide fracture in cold aluminium rolling // Acta Materialia. 2004. Vol. 52. P. 911–920.

Language of full-text russian
Full content Buy
Back