Journals →  Chernye Metally →  2023 →  #9 →  Back

Rolling and Heat treatment
ArticleName Experimental testing of radial-shear rolling to obtain a deformed alloy of the Co – Cr – Mo system
DOI 10.17580/chm.2023.09.08
ArticleAuthor S. P. Galkin, Yu. V. Gamin, T. Yu. Kin, S. A. Kostin

National University of Science and Technology MISIS, Moscow, Russia:

S. P. Galkin, Dr. Eng., Prof., Dept. of Metal Forming, e-mail:
Yu. V. Gamin, Cand. Eng., Associate Prof., Dept. of Metal Forming, e-mail:
T. Yu. Kin, Postgraduate Student, Dept. of Metal Forming, e-mail:


JSC Plant of High-Quality Alloys, Moscow, Russia:

S. A. Kostin, Development Director, e-mail:


An experimental testing of the technology for obtaining a deformed Co-28Cr-6Mo alloy using radial shear rolling is presented. Mechanical peeled and homogenized ingots of vacuum induction melting with a diameter of 57 mm were subjected to radial shear rolling in 4-5 passes to bars with a diameter of 18 and 29 mm at a temperature of 1200 °C with quenching of the final profile in water or cooling in air. A study of the microstructure, mechanical properties in the cast and deformed state was carried out. The requirements of GOST ISO 5832-12-2009 in terms of normalized indicators - tensile strength, yield strength and relative elongation are fully satisfied. At the same time, there is an increase in relative elongation by 1.4-1.6 times compared with the initial cast state and an excess of regulatory requirements by 3.0-3.3 times. The experimental technology has been implemented at NUST MISIS radial shear rolling mills and has the prospect of industrial scaling. The very significant advantages of the proposed technology include a small total elongation ratio (μ = 3.86), which ensures that the requirements of GOST on mechanical properties for the deformed Co-Cr-Mo alloy are met.
The study was supported by the Russian Science Foundation grant No. 23-19-00477,

keywords Co-Cr-Mo alloy, experimental technology, deformed semi-finished product, radial shear rolling, elongation ratio, microstructure, mechanical properties

1. GOST R ISO 5832-12–2009. Implants for surgery. Metal materials. Part 12: Wrought cobaltchromium-molybdenum alloy. Introduced: 01.09.2010.
2. Eliaz N. Corrosion of metallic biomaterials: A review. Materials. 2019. Vol. 12, Iss. 3. 407. DOI: 10.3390/ma12030407
3. Galkin S. P., Gamin Yu. V., Aleshchenko A. S., Romantsev B. A. Modern development of elements of theory, technology and mini-mills of radial-shear rolling. Chernye Metally. 2021. No. 12. pp. 51–58.
4. Potapov I. N., Polukhin P. I. Technology of screw rolling. Moscow : Metallurgiya, 1990. 344 p.
5. Stefanik A., Szota P., Mróz S., Wachowski M. Changes in the properties in bimodal Mg alloy bars obtained for various deformation patterns in the RSR rolling process. Materials. 2022. Vol. 15, Iss. 3. 954. DOI: 10.3390/ma15030954
6. Galkin S. P., Aleshchenko A. S., Gamin Y. V. Development and experimental testing of the technology for producing deformed bars of alloy D16T from continuously casting billets of small diameter with low elongation ratios. Russ. J. Non-ferrous Metals. 2022. Vol. 63. pp. 328–335. DOI: 10.3103/S1067821222030063
7. Lezhnev S. N., Naizabekov A. B., Panin E. A., Volokitina I. E., Arbuz A. S. Graded microstructure preparation in austenitic stainless steel during radial-shear rolling. Metallurgist. 2021. Vol. 64. pp. 1150–1159. DOI: 10.1007/s11015-021-01100-5
8. Galkin S. P., Aleschenko A. S., Romantsev B. A. et al. Effect of preliminary deformation of continuously cast billets by radial-shear rolling on the structure and properties of hot-rolled chromium-containing steel pipes. Metallurgist. 2021. Vol. 65. pp. 185–195. DOI: 10.1007/s11015-021-01147-4
9. Wolrath K. Production of round products using three-roll mills. Chernye Metally. 2004. No.12. pp. 23, 24.
10. Nussbaum G., Kraemer V., Bittner G., Schnel G. Experience and results of operation of a three-roll reducing and sizing unit. Chernye Metally. 2007. No. 1. pp. 37–43.
11. Radyuchenko Yu. S. Rotary forging. Moscow : GNTI, Mashlit, 1962. 188 p.
12. Andreev V. A., Yusupov V. S., Perkas M. M., Prosvirnin V. V. et al. Mechanical and functional properties of commercial alloy TN-1 semiproducts fabricated by warm rotary forging and ECAP. Russ. Metall. 2017. Vol. 2017. No. 10. pp. 890–894. DOI: 10.1134/S0036029517100020
13. Kharitonov E. A., Alekseev P. L., Romanenko V. P. Temperature field in blank during radial-shear rolling. Steel in Translation. 2010. No. 40. pp. 12–16. DOI: 10.3103/S0967091210010043
14. Gamin Y. V., Koshmin A. N., Dolbachev A. P. et al. Studying the influence of radial-shear rolling on thermal deformation conditions of A1050 processing. Russ. J. Non-ferrous Metals. 2020. No. 61. pp. 646–657. DOI: 10.3103/S1067821220060085
15. Arbuz A., Kawalek A., Ozhmegov K., Dyja H. et al. Using of radial-shear rolling to improve the structure and radiation resistance of zirconium-based alloys. Materials. 2020. Vol. 13, Iss. 19. 4306. DOI: 10.3390/ma13194306
16. Valeev I. Sh., Valeeva A. Kh. Changes in the microhardness and microstructure of M1 copper during radial-shear rolling. Materials Letters. 2013. Vol. 3. No.1 (9). pp. 38–40.
17. Stefanik A., Szota P., Mróz S. et al. Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes. Arch. Metall. Mater. 2015. Vol. 60, Iss. 4. pp. 3002–3005. DOI: 10.1515/amm-2015-0479
18. Stefanik A., Morel A., Mroz S., Szota P. Theoretical and experimental analysis of aluminum bars rolling process in three-high skew rolling mill. Arch. Metall. Mater. 2015. Vol. 60. Iss. 2. pp. 809–813.
19. Valeev I. S., Valeeva A. K., Fazlyakhmetov R. F. et al. Effect of radial-shear rolling on structure of aluminum alloy D16 (Al-4.4Cu-1.6Mg). Inorg. Mater. Appl. Res. 2015. Vol. 6. pp. 45–48. DOI: 10.1134/S2075113315010153
20. Naydenkin E. V., Ratochka I. V., Mishin I. P., Lykova O. N. Evolution of the structural-phase state of a VT22 titanium alloy during helical rolling and subsequent aging. Russ. Phys. J. 2015. Vol. 58, Iss. 8. pp. 1068–1073. DOI: 10.1007/s11182-015-0613-7
21. Valeeva A. Kh., Valeev I. Sh., Fazlyakhmetov R. F. Microstructure of the β-Phase in the Sn11Sb5.5Cu babbit. Phys. Metals Metallogr. 2017. Vol. 118, Iss. 1. pp. 48–51. DOI: 10.1134/S0031918X17010082
22. Naizabekov A. B., Lezhnev S. N., Dyja H., Bajor T. et al. The effect of cross rolling on the microstructure of ferrous and non-ferrous metals and alloys. Metalurgija. 2017. Vol. 56. Iss. 1–2. pp. 199–202.
23. Karpov B. V., Patrin P. V., Galkin S. P. et al. Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤200 mm). Metallurgist. 2018. Vol. 61. Iss. 9–10. pp. 884–890. DOI: 10.1007/s11015-018-0581-6
24. Patrin P. V., Karpov B. V., Aleshchenko A. S., Galkin S. P. Evaluation of technological possibilities of radial-shear rolling of long products from KhN73MBTYu heat-resistant alloy. Stal. 2020. No. 1. pp. 18–21.
25. Gamin Yu. V., Kin T. Yu., Tikhomirov E. O. Analysis of the microstructure, phase composition and properties of the Co–29Cr–6Mo alloy in the cast and annealed state. Bernstein Readings on Thermomechanical Processing of Metallic Materials. Collection of abstracts. Scientific and technical workshop. Moscow. 2022. p. 120.
26. Chiba A., Kumagai K., Takeda H., Nomura N. Mechanical properties of forged low Ni and C-containing Co – Cr – Mo biomedical implant alloy. Materials Science Forum. 2005. Vols. 475–479. pp. 2317–2322. DOI: 10.4028/
27. Huang P., Lopez H. F. Athermal ε-martensite in a Co – Cr – Mo alloy: grain size effects. Materials Letters. 1999. Vol. 39, Iss. 4. pp. 249–253. DOI: 10.1016/s0167-577x(99)00022-1

Language of full-text russian
Full content Buy