Journals →  Tsvetnye Metally →  2023 →  #9 →  Back

NANOSTRUCTURED METALS AND MATERIALS
ArticleName Preparation of zinc nanooxide and its application for antibacterial coatings
DOI 10.17580/tsm.2023.09.06
ArticleAuthor Pham Q. T., Syrkov A. G., Silivanov M. O., Ngo Q. K.
ArticleAuthorData

Institute of Chemistry and New Materials, Hanoi, Vietnam:

Q. T. Pham, Principal Researcher at the Department of Novel Materials, Candidate of Chemical Sciences, e-mail: phamquangthuan1982@gmail.com

 

Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia:
A. G. Syrkov, Professor at the Department of General and Technical Physics, Doctor of Technical Sciences, e-mail: Syrkov_AG@pers.spmi.ru
M. O. Silivanov, Associate Professor at the Department of General and Technical Physics, Candidate of Technical Sciences, e-mail: Silivanov_MO@pers.spmi.ru
Q. K. Ngo, Postgraduate Student at the Department of Chemical Technologies and Energy Processing, e-mail: ngoquockhanh292@mail.ru

Abstract

This paper looks at the production of zinc nanooxides, characterization of their nanostructure and composition with the help of modern instrumental techniques and development of multifunctional ZnO coatings with enhanced properties. Zinc oxide finds various applications in metallurgy: it is used as a useful additive to metallic zinc, in pyrometallurgical processes, as a component of protective coatings on metal, for zincate (immersion) processing of non-ferrous metals. Not only can zinc oxide nanoparticles enhance the protective properties of coatings when exposed to aggressive media, but they can also resist viruses, fungi and microbes on the surface of various materials. Zinc nanooxide (ZnO) is a non-toxic inorganic oxide, therefore it is of relevance to conduct studies to better understand how to synthesize it and apply for food protection. In this study, ZnO nanoparticles were synthesized by the hydrothermal method and characterized with the help of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The average size of ZnO crystals, determined from the X-ray diffraction pattern, is consistent with the results obtained from the SEM images. ZnO nanoparticles were introduced, as an antibacterial agent, in the chitosan/gum Arabic (CH/GA) safe protective coating. It is shown that the durability of such coatings when applied to the surface of cathode nickel can be enhanced through modification of the initial metal with quaternary ammonium compound (triamon and alkamon) based cation-active agents and treatment of ZnO with triamon. This does not affect the antibacterial properties of zinc nanooxides. In fact, nanooxides of zinc are used as an antibacterial additive in chitosan/gum Arabic protective coatings on food by the Hoang Anh Gia Lai International Agricultural Company.

keywords Protective coating, oxides of non-ferrous metals, ZnO nanoparticles, hydrothermal synthesis, cathode nickel, antioxidants, antibacterial properties
References

1. Meleshko А. A., Afinogenova A. G., Afinogenov G. E. et al. Аntibacterial inorganic agents: efficiency of using multicomponent systems. Russian Journal of Infection and Immunity. 2020. Vol. 10, No. 4. pp. 639–654. DOI: 10.15789/2220-7619-AIA-1512
2. Matsakova E. G., Simakova D. I. Nanoparticles exhibiting antibacterial effects: properties, preparation, mechanism of action, application. Russian Nanotechnologies. 2020. Vol. 15, No. 2. pp. 238–243. DOI: 10.1134/S1992722320020156
3. Dovnar R. I., Smotrin S. M., Anufrik S. S., Sokolova T. N. et al. Antibacterial and physico-chemical properties of silver and zinc oxide nanoparticles. Journal of Grodno State Medical University. 2022. Vol. 20, No. 1. pp. 98–107. DOI: 10.25298/2221-8785-2022-20-1-98-107
4. Syrkov A. G., Bazhin V. Yu., Mustafaev A. S. Nanotechnology and nanomaterials. Physical and mineral-resource aspects. St. Petersburg : Polytech-Press, 2019. 244 p.
5. Litvinenko V. S., Sergeev I. B. Innovations as a Factor in the Development of the Natural Resources Sector. Studies on Russian Economic Development. 2019. Vol. 6. pp. 637–645. DOI: 10.1134/S107570071906011X
6. Dyshlyuk L. S., Prosekov A. Yu. Investigation of the antibacterial properties of copper and zinc oxide nanoparticles in order to use them as additives in the production of biodegradable films. Bulletin of TVGU. Series: Biology and Ecology. 2019. No. 3. pp. 194–202. DOI: 10.26456/vtbio112
7. Voitekhovsky Yu. L. Crystal morphology of spherical viruses. Journal of Mining Institute. 2021. No. 248. pp. 190–194. DOI: 10.31897/PMI.2021.2.3
8. Litvinenko V. S., Tsvetkov P. S., Dvoynikov M. V., Buslaev G. V. Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development. Journal of Mining Institute. 2020. Vol. 244. pp. 421–431. DOI: 10.31897/pmi.2020.4.5
9. Qing Zhang et al. Methods and applications of nanocellulose loaded with inorganic nanomaterials: A review. Carbohydrate Polymers. 2020. Vol. 229. 115454. DOI: 10.1016/j.carbpol.2019.115454
10. Permiakov N., Maraeva E., Bobkov A., Mbwahnche R. et al. Investigation of the conductive properties of ZnO thin films using liquid probes and creation of a setup using liquid probes EGaIn for studying the conductive properties of thin films. Technologies. 2023. Vol. 11. p. 26. DOI: 10.3390/technologies11010026

11. Kozerozhets I. V., Panasyuk G. P., Azarova L. A., Belan V. N. et al. Obtaining, properties and application of nanosized powders of magnesium oxide. Review. Theoretical Foundations of Chemical Technology. 2021. Vol. 55, No. 6. pp. 663–669. DOI: 10.31857/S004035712106004X
12. Borda d'Água R. et al. Efficient coverage of ZnO nanoparticles on cotton fibers for antibacterial finishing using a rapid and low cost in situ synthesis. New Journal of Chemistry. 2018. Vol. 42, Iss. 2. pp. 1052–1060. DOI: 10.1039/C7NJ03418K
13. Ma J., An W., Xu Q., Fan Q. et al. Antibacterial casein-based ZnO nanocomposite coatings with improved water resistance crafted via double in situ route. Progress in Organic Coatings. 2019. Vol. 134. pp. 40–47. DOI: 10.1016/j.porgcoat.2019.05.007
14. Kozlov P. A., Panshin A. M., Yakornov S. A., Ivakin D. A. Investigation of the behavior of zinc and impurities during alkaline leaching of a zinc-containing product of pyrometallurgical processing of ferrous metallurgy dusts and the phase composition of the residue after leaching. Tsvetnye Metally. 2021. No. 3. pp. 41–49.
15. Korenkova S. Yu., Tikhonov I. A., Chubenko E. B. Synthesis and properties of composite materials based on zinc oxide nanoparticles in a dielectric matrix. Doklady BSUIR. 2020. No. 18. pp. 25–32. DOI: 10.35596/1729-7648-2020-18-6-25-32
16. Kemelbekova A. E., Mukhamedshina D. M. Synthesis of highly dispersed forms of zinc oxide doped with rare earth elements (review). Complex Use of Mineral Raw Materials. 2019. No. 4. pp. 12–18. DOI: 10.31643/2019/6445.33
17. Pozhidaeva S. D., Ageeva L. S., Ivanov A. M. Comparative characteristics of zinc oxidation with the participation of acids at room temperatures. Journal of Mining Institute. 2019. Vol. 235. pp. 38–46. DOI: 10.31897/pmi.2019.1.38
18. Golubev V. O., Litvinova T. E. Dynamic modeling of the industrial cycle of gibbsite crystallization. Journal of Mining Institute. 2021. Vol. 247. pp. 88–101. DOI: 10.31897/PMI.2021.1.10
19. Gromov O. G., Tikhomirova E. L., Saveliev Yu. A. Synthesis of nanopowders of zinc oxide doped with gallium, indium, aluminium. Proceedings of the Kola Scientific Center of the Russian Academy of Sciences. 2018. Vol. 9, No. 2. pp. 764–767. DOI: 10.25702/KSC.2307-5252.2018.9.1.764-767
20. Tomaev V. V., Polishchuk V. A., Vartanyan T. A. Optical density of nanocomposite ZnO films doped with Au, Al, Cu. AIP Conference Proceedings. 2019. 40006. pp. 1–5. DOI: 10.1063/1.5087685
21. Popova A. N., Kison V. E., Sukhomlinov V. S., Mustafaev A. S. Development of new plasma technology methods in synthetic materials production and research. Materials Science Forum. 2021. No. 7. pp. 87–93. DOI: 10.4028/www.scientific.net/MSF.1040.87
22. Beloglazov I. I., Savchenkov S. A., Bazhin V. Y., Kawalla R. Synthesis of Mg – Zn – Nd master alloy in metallothermic reduction of neodymium from fluoride–chloride melt. Crystals. 2020. No. 10. pp. 1–10. DOI: 10.3390/cryst10110985
23. Savchenkov S. A., Bazhin V. Y., Brichkin V. N. Synthesis of magnesiumzinc-yttrium master alloy. Letters on Materials. 2019. Vol. 3, No. 9. pp. 339–343. DOI: 10.22226/2410-3535-2019-3-339-343
24. Ryabko A. A., Maksimov I. A., Moshnikov V. A. Synthesis of optosensitive structures based on zinc oxide. Journal of Physics: Conference Series. 2018. Vol. 993. 012024. DOI: 10.1088/1742-6596/993/1/012024
25. Sanaz Alamdari et al. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surfaces and Interfaces. 2022. Vol. 34. 102349. DOI: 10.1016/j.surfin.2022.102349
26. Kona Mondal, Vaibhav V. Goud, Vimal Katiyar. Effect of waste green algal biomass extract incorporated chitosan-based edible coating on the shelf life and quality attributes of tomato. ACS Food Science & Technology. 2022. Vol. 2. pp. 1151–1165. DOI: 10.1021/acsfoodscitech.2c00174
27. Zhong Q., Long H., Hu W., Shi L. et al. Dual-function antibacterial micelle via self-assembling block copolymers with various antibacterial nanoparticles. ACS Omega. 2020. Vol. 5, No. 15. pp. 8523–8533. DOI: 10.1021/acsomega.9b04086
28. Lin M. H. et al. Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants. Carbohydrate Polymers. 2021. Vol. 257. 117639. DOI: 10.1016/j.carbpol.2021.117639
29. Cazón P., Vázquez M. Mechanical and barrier properties of chitosan combined with other components as food packaging film. Environmental Chemistry Letters. 2020. Vol. 18. pp. 257–267. DOI: 10.1007/s10311-019-00936-3
30. Azmana M., Mahmood S., Hilles A. R., Rahman A. et al. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules. 2021. Vol. 185. pp. 832–848. DOI: 10.1016/j.ijbiomac.2021.07.023
31. Vladut C. M. et al. Effect of thermal treatment on the structure and morphology of vanadium doped ZnO nanostructures obtained by microwave assisted sol–gel method. Gels. 2022. Vol. 8. 811. DOI: 10.3390/gels8120811
32. GOST 10106–75. Alkamon ОС-2. Specifications. Introduced: 01.01.1977.
33. TU 6-14-1059–83. Triamon. Introduced: 01.10.1983.
34. Pham V. V., Nguyen T. D., Ha La P. P., Cao M. T. A comparison study of the photocatalytic activity of ZnO nanoparticles for organic contaminants degradation under low-power UV-A lamp. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2020. Vol. 11. DOI: 10.1088/2043-6254/ab6163
35. Ghazvini A. B., Acharya B., Korber D. R. Antimicrobial biodegradable food packaging based on chitosan and metal/metal-oxide, bio-nanocomposites: a review. Polymers. 2021. Vol. 13. 2790. DOI: 10.3390/polym13162790
36. Redozubov S. S., Nenasheva E. A., Gaidamaka I. M., Zaitseva N. V. Low-temperature ceramic materials based on compounds with a pyrochloretype structure in the BI2O3 – ZnO – NB2O5 system. Inorganic Materials. 2020. Vol. 56, No. 1. pp. 77–82. DOI: 10.1134/S0020168520010124
37. Li Z., Liu W., Wang R., Chen F. et al. Interface design for electrically pumped ultraviolet nanolaser from single ZnO-nanorod. Nano Energy. 2022. Vol. 93. 106832. DOI: 10.1016/J.NANOEN.2021.106832
38. Ganzulenko O. Yu., Maskova M. S., Ivantsova N. Yu. Experience of application of nanosized coatings in different branches of industry. Proceedings of International Symposium “Nanophysics and Nanomaterials”. November 23–24, 2022. Saint Petersburg, 2022. pp. 87–92.
39. New materials: Preparation, properties and applications in the aspect of nanotechnology. New York : Nova Science Publishers, Inc., 2020. 247 p.
40. Yachmenova L. A. Developing an energy and resource saving technology for producing metal products using reducer-modifier hydrides: Extended abstract of PhD dissertation. St. Petersburg, 2021. 23 p.
41. Applied aspects of nano-physics and nano-engineering. New York : Nova Science Publishers, Inc., 2019. 308 p.
42. Lange K. R. Surfactants: Synthesis, properties, analysis, application. St. Petersburg : Professiya, 2007. 240 p.
43. Musina D. T., Kabirov V. R., Khanh N. Q. Electrophilic and nucleophilic modifiers as a factor of formation of lipophilic properties of surfacemodified materials. Materials Science Forum. 2021. Vol. 1040. pp. 94–100.
DOI: 10.4028/www.scientific.net/MSF.1040.94
44. Khadiga A. I., Ahmad El Askary, Farea M. O. et al. Perspectives on composite films of chitosan-based natural products (Ginger, Curcumin, and Cinnamon) as biomaterials for wound dressing. Arabian Journal of Chemistry. 2022. Vol. 15, No. 4. 103716. DOI: 10.1016/j.arabjc.2022.103716
45. Abdelkareem A. A. Health benefits of Gum Arabic and medical use. Gum Arabic. Elsevier, 2018. pp. 183–210. DOI: 10.1016/B978-0-12-812002-6.00016-6
46. Pham V. T., Ngo Q. K., Murilio O. H. Synthesis of antibacterial zinc nanooxide and its application in protective coatings for food storage. Proceedings of International Symposium “Nanophysics and Nanomaterials”. November 23–24, 2022. Saint Petersburg, 2022. pp. 316–324.

Language of full-text russian
Full content Buy
Back