Journals →  Tsvetnye Metally →  2023 →  #9 →  Back

MATERIALS SCIENCE
ArticleName A combined effect of the structure of aluminium – silicon and aluminium – titanium master alloys on the structure and properties of Al – Si – Mg alloy
DOI 10.17580/tsm.2023.09.08
ArticleAuthor Biktimirov R. M., Timoshkin I. Yu., Nikitin K. V.
ArticleAuthorData

Samara State Technical University, Samara, Russia:

R. M. Biktimirov, Assistant Lecturer at the Department of Foundry and High- Efficiency Technologies, Engineer, e-mail: r.biktimirov1995@gmail.com
I. Yu. Timoshkin, Associate Professor at the Department of Foundry and High-Efficiency Technologies, Candidate of Technical Sciences, e-mail: ivan-mns@mail.ru
K. V. Nikitin, Dean of the Faculty of Mechanical Engineering, Metallurgy and Transport, Doctor of Technical Sciences, Professor, e-mail: kvn-6411@mail.ru

Abstract

This paper describes the results of a study that looked at the effect of the structure of AlSi20 and AlTi5 master alloys on the structure and physico-mechanical properties of alloy AK9ch (Al – Si – Mg system). It is demonstrated that due to the use of mould for processing of master alloy melts (solidification in a water-cooled roller mould), microdispersed phases get formed in the master alloy structure: primary silicon crystals Siп (in AlSi20) and intermetallides Al3Ti (in AlTi5). The paper examines the effect of the AlTi5 master alloy on the structure and physico-mechanical properties of the AK9ch alloy produced by using coarse-crystalline and microcrystalline master alloys. It was found that the partially modified structure of the AK9ch alloy can be obtained avoiding using the AlTi5 master alloy when using microcrystalline AlSi20 master alloy as the basis. The experiments that were aimed at understanding the relationship between the master alloy structure and the modification capacity of the alloy showed that the structure of the AlSi20 and AlTi5 master alloys produces a hereditary effect on the structure and physico-mechanical properties of the AK9ch alloy. Optimum parameters in terms of structure, gas content and physico-mechanical properties were achieved in the alloy produced with the help of microcrystalline AlSi20 and AlTi5 master alloys. However, this required introduction of 0.02%(wt.) Ti. When using coarse-crystalline master alloys, 0.06%(wt.) Ti should be introduced for optimum parameters to be achieved. By using microcrystalline master alloys for alloy preparation, one can achieve a triple reduction in the consumption of the high-cost AlTi5 master alloy without compromising the physico-mechanical properties. The established effects can be well explained from the point of view of the key regularities of structural heredity.

keywords Aluminium alloys, master alloys, grain refinement, structure, physicomechanical properties, structural heredity effect
References

1. Stojanovic B., Bukvic М., Epler I. Application of aluminum and aluminum alloys in engineering. Applied Engineering Letters. 2018. Vol. 3, No. 2. pp. 52–62.
2. Nappi C. The global aluminium industry 40 years from 1972. 2013. 27 p.
3. Dudin M. N., Voykova N. A., Frolova E. E., Artemieva J. A. et al. Modern trends and challenges of development of global aluminum industry. Metalurgija. 2017. Vol. 56. pp. 255–258.
4. Djurdjevic M. B., Odanovic Z., Pavlovic-Krstic J. Melt quality control at aluminum casting plants. Metallurgical & Materials Engineering. 2010. Vol. 16. pp. 63–76.
5. Nikitin V. I., Nikitin K. V. Heredity in casting alloys. Moscow : Mashinostroenie-1, 2005. 474 p.
6. Nikitin K. V., Nikitin V. I., Timoshkin I. Yu. Quality control of aluminium alloy castings implemented on the basis of structural heredity phenomenon. Moscow : Radunitsa, 2015. 227 p.
7. Selyanin I. F., Deev V. B., Kukharenko A. V. Resource-saving and environment-friendly production of secondary aluminium alloys. Izvestiya vuzov. Tsvetnaya metallurgiya. 2015. No. 2. pp. 20–25.
8. Deev V. B., Selyanin I. F., Ponomareva K. V., Yudin A. S., Tsetsorina S. A. Fast cooling of aluminum alloys in casting with a gasifying core. Steel in Translation. 2014. Vol. 44, No. 4. pp. 253, 254.
9. Mansurov Yu. N., Rakhmonov J. U., Letyagin N. V., Finogeyev A. S. Influence of impurity elements on the casting properties of Al – Mg based alloys. Non-Ferrous Metals. 2018. No. 1. pp. 24–29.
10. Rana R. S., Rajesh Purohit, Das S. Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. International Journal of Scientific and
Research Publications. 2012. Vol. 2, Iss. 6. pp. 1–7.
11. Murty B. S., Kori S. A., Chakraborty M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. International Materials Reviews. 2002. Vol. 47, No. 1. pp. 3–29.
12. Sigworth G. K., Kuhn T. A. Grain refinement of aluminum casting alloys. International Journal of Metalcasting. 2007. Vol. 115, Iss. 2. pp. 31–40.
13. Sigworth G. K. The modification of Al – Si casting alloys: Important practical and theoretical aspects. International Journal of Metalcasting. 2008. Vol. 2, No. 2. pp. 19–40.
14. Faraji M., Katgerman L. Grain refinement and modification in hypoeutectic Al – Si alloys. Foundry Trade Journal. 2010. Vol. 184. pp. 315–318.
15. Lakhwinder S., Geetesh G., Rupinderpreet S. Review of the latest developments in grain refinement. International Journal of Modern Engineering Research. 2012. Vol. 2, Iss. 4. pp. 2724–2727.
16. Easton M. A., Qian M., Prasad A., StJohn D. H. Recent advances in grain refinement of light metals and alloys. Current Opinion in Solid State and Materials Science. 2016. Vol. 20. pp. 13–24.
17. Nikitin K. V., Nikitin V. I., Timoshkin I. Yu., Biktimirov R. M., Novikov A. P. Hereditary influence of deformed waste on the efficiency of modification of alloy systems Al – Si – Mg and Al – Mg. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, Iss. 4. pp. 400–408.
18. Rathod N. R., Manghani J. V. Effect of modifier and grain refiner on cast Al – 7 Si aluminum alloy: A review. International Journal of Emerging Trends in Engineering and Development. 2012. Vol. 5, No. 2. pp. 574–581.
19. Fang Q., Granger D. Porosity formation in modified and unmodified A356 alloy castings. AFS Transaction. 1989. Vol. 97. pp. 989–1000.
20. Safwan M. A. Al-Qawabah, Adnan I. O. Zaid. Different methods for grain refinement of materials. International Journal of Scientific & Engineering Research. 2016. Vol. 7, Iss. 7. pp. 1133–1140.
21. Kaiser M. S., Datta S., Roychowdhury A., Banerjee M. K. Effect of scandium on the microstructure and ageing behaviour of cast Al – 6Mg alloy. Materials Characterization. 2008. Vol. 59, Iss. 11. pp. 1661–1666.
22. Shiang Zhou, Zhen Zhang, Ming Li, Dejiang Pan et al. Effect of Sc on microstructure and mechanical properties of as-cast Al – Mg alloys. Materials and Design. 2016. Vol. 90. pp. 1077–1084.
23. Kaiser M. S., Datta S., Roychowdhury A., Banerjee M. K. Effect of scandium on the microstructure and ageing behaviour of cast Al – 6Mg alloy. Materials Characterization. 2008. Vol. 59, No. 11. pp. 1661–1666.
24. Kaiser M. S., Datta S., Bandyopadhyay P. P., Guha A. et al. Effect of grain refinement through minor additions of scandium and zirconium on the machinability of Al – Mg alloys. Journal of The Institution of Engineers (India): Series D. 2013. Vol. 94, No. 1. pp. 17–24.
25. Nikitin V. I., Nikitin K. V. On the classification of grain refiners to produce casting and wrought alloys. Metallurgiya mashinostroeniya. 2020. No. 6. pp. 8–17.
26. Nogita K., McDonald S. D., Dahle A. K. Eutectic modification of Al – Si alloys with rare earth metals. Materials Transactions. 2004. Vol. 45, No. 2. pp. 323–326.
27. Xing P., Gao B., Zhuang Y., Liu K., Tu G. On the modification of hypereutectic Al – Si alloys using rare earth Er. Acta Metallurgica Sinica (English Letters). 2010. Vol. 23, Iss. 5. pp. 327–333.

28. Alkahtani S. A., Elgallad E. M., Tash M. M., Samuel A. M., Samuel F. H. Effect of rare earth metals on the microstructure of Al – Si based alloys. Materials. 2016. Vol. 9, Iss. 1. p. 45.
29. Ri E. Kh., Ri Kh., Goncharov A. V. Effect of Al – Y – Ce – La master alloy on structure formation, liquation processes and properties of AK7ch silumine (AL9). Proceedings of the ICMTMTE 2019. Sevastopol, Russia, 9–13 September 2019. MATEC Web of Conferences. 2019. Vol. 298. p. 56.
30. Ri E. H., Ri Hosen, Khimukhin S. N., Ermakov M. A., Khimukhin T. S. Рroduction of aluminum alloys modificator from ligature. ARPN Journal of Engineering and Applied Sciences. 2018. Vol. 13, No. 4. pp. 1265–1271.
31. GOST 1583–93. Aluminium casting alloys. Specifications. Introduced: 01.01.1997.
32. GOST 11069–2001. Primary aluminium. Grades. Introduced: 01.01.2003.
33. GOST 53777–2010. Master alloys of aluminium. Introduced: 01.07.2010.
34. GOST 804–93. Primary magnesium ingots. Introduced: 01.01.1997.
35. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
36. GOST 211321.1–81. Aluminium and aluminium alloys. Methods for determination of hydrogen in solid metal. Introduced: 01.01.1983.

Language of full-text russian
Full content Buy
Back