ArticleName |
Mathematical modeling of the influence
of the place of delivery of electrode metal drops on the metal bath depth during electroslag remelting |
ArticleAuthorData |
South Ural State University, Chelyabinsk, Russia
G. P. Vyatkin, Prof., Dr. Chem., Advisor to the rector
I. M. Yachikov, Dr. Eng., Prof., Dept. of Information and Measuring Technology
Branch of South Ural State University in Zlatoust, Zlatoust, Russia M. A. Matveeva, Senior Lecturer, Dept. of Materials Engineering and Production Technologies, e-mail: matveevama@susu.ru I. V. Chumanov, Dr. Eng., Prof., Head of the Dept. of Materials Engineering and Production Technologies |
Abstract |
The article analyzes ways to influence the process of electroslag remelting in order to reduce the depth of the liquid metal bath. Painful depth of the liquid metal bath is the reason that prevents the use of electroslag remelting for obtaining multilayer castings. The method of remelting with rotation of the consumable electrode, which allows to change the place of delivery of electrode metal droplets into the metal bath, thus contributing to reducing its depth, is proposed. A mathematical model is proposed, which makes it possible to estimate the effect of changing the place of delivery of electrode metal droplets into the liquid metal bath on its depth. Achieving quasi-stationary thermal regime of the metal bath is achieved by using the transition from the initial to the steady-state thermal state, by solving the non-stationary problem of thermal conductivity, taking into account the phase transition with specific boundary conditions. Temperature distribution in the solid, two-phase and liquid regions of the bath is described by the general thermal conductivity equation. To obtain an approximate solution, the finite difference method was used. Results of mathematical modeling show the change in the position of liquidus and solidus lines for alloys of a given chemical composition depending on changes in the place of delivery of electrode metal droplets during remelting with rotation of the consumable electrode. Changing the place of delivery of droplets from the subelectrode zone closer to the wall of the crystallizer leads to a decrease in the depth of the metal bath. The reason for the decrease in the depth of the metal bath is the redistribution of heat flows in the slag and metal baths. Mathematical model was the basis for creating a computer program "Thermal state of the crystallizing billet in the electric arc furnace". The study was carried out at the expense of Russian Science Foundation’ grant № 22-29-20049, https://rscf.en/project/22-29-20049/. |
References |
1. Vachugov G. A., Chumanov V. I., Khasin G. A. Influence of the consumable electrode rotation on the process of electroslag remelting. Sovremennaya elektrometallurgiya. 1975. No. 25. pp. 31–36. 2. Vdovin K. N., Gorlenko D. A., Egorova L. G. et al. Electroslag remelting at a metallurgical enterprise: monograph. Izdatelstvo Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova, 2018. 141 p. 3. Xihai L., Junqing W., Weiguo J. et al. Simulation of electro-slag remelting process of 120 t large ingot for nuclear power station and its application. China Foundry. 2011. Vol. 8, Iss. 4. pp. 413–417. 4. Li B., Wang F., Tsukihashi F. Current, magnetic field and joule heating in electroslag remelting processes. ISIJ Int. 2012. Vol. 52. Iss. 7. pp. 1289–1295. 5. Guo Y., Qi W., Xia Z. et al. Refinement of eutectic carbides in M2 high speed steel by adjusting magnetic flux density during magnetic controlled ESR process. Metallurgical and Materials Transacions B. 2022. Vol. 53, Iss. 3. pp. 3384–3395. DOI: 10.1007/s11663-022-02616-0 6. Babenko E. G., Kuzmichev E. N., Kolesnikov M. A. Study of the control mechanical effect on increasing the efficiency of metal alloying during electroslag remelting. Vestnik instituta tyagi i podvizhnogo sostava. 2012. No. 8. pp. 225–232. 7. Shi X., Chang L., Wang J. Effect of mold rotation on the bifilar electroslag remelting process. International Journal of Minerals, Metallurgy and Materials. 2015. Vol. 22, Iss. 10. pp. 1033–1042. 8. Shi X., Wang E., Wang Y. et al. Effect of different power supply modes on inclusion in 304L stainless steel electroslag ingot. Metals. 2023. Vol. 13, Iss. 3. 457. DOI: 10.3390/met13030457 9. Babenko E. G., Kuzmichev E. N., Kolesnikov M. A. Method for mixing a slag bath during electroslag remelting of a consumable electrode. Copyright certificate of the USSR No. 216.012. 448 p. Spetsialnaya elektrometallurgiya. 1983. No. 53. pp. 19–20. 10. Kompan Ya. Yu., Nazarchuk A. T., Protokovilov I. V. On the issue of intensifying electromagnetic influence during magnetically controlled electroslag melting of titanium alloys. Sovremennaya elektrometallurgiya. 2007. No. 4. pp. 3–7. 11. Protokovilov I. V., Porokhonko V. B. Physical modeling of droplet transfer of electrode metal during ESR with the imposition of pulsed magnetic fields. Sovremennaya electrometallurgiya. 2017. No. 3. pp. 9–13. 12. Medovar L. B., Tsykulenko A. K., Chernets A. V. et al. Study of the influence of double-circuit ESR circuit parameters on the size and shape of a metal bath. Problemy spetsialnoy elektrometallurgii. 2000. No. 4. pp. 3–7. 13. Medovar L. B., Saenko V. Ya., Stovpchenko A. P. et al. Electroslag technologies for producing large forging ingots. Sovremennaya elektrometallurgiya. 2010. No. 3. pp. 5–10. 14. Shubert C., Eickhoff M., Herbert P. Numerical simulations of the molten metal droplet formation in the electroslag remelting process with a rotating electrode. Steel Research International. 2022. Vol. 93, Iss. 12. 2100765. 15. Chumanov I. V., Pyatygin D. A., Chumanov V. I. Method of electroslag remelting. Patent RF, No. 2332471. Applied: 24.07.2006. Published: 27.08.2008. 16. Seliverstov D. A., Pyatydin D. A., Chumanov I. V. On the issue of economic feasibility of converting VAR furnaces to ESR DC furnaces. Izvestiya vuzov. Chernaya metallurgiya. 2007. No. 1. pp. 24–26. 17. Chumanov I. V., Porsev M. A. On the possibility of producing multilayer ingots by electroslag remelting. Elektrometallurgiya. 2010. No. 4. pp. 13–17. 18. Chumanov I. V., Matveeva M. A., Sergeev D. V. Effect of the consumable electrode rotation during electroslag remelting on the anisotropy of the resulting ingot properties. Izvestiya vuzov. Chernaya metallurgiya. 2019. Vol. 62. No. 2. pp. 91–96. 19. Klyuev M. M., Volkov S. E. Electroslag remelting. Moscow : Metallurgiya, 1974. 496 p. 20. Yachikov I. M., Chumanov I. V., Portnova I. V., Matveeva M. A. Thermal state of a crystallizing ESR billet with a rotating electrode. Copyright certificate No. 2021612155. Applied: 12.02.2021. Published: 12.02.2021. |