Journals →  Обогащение руд →  2023 →  #5 →  Back

ОБОГАТИТЕЛЬНЫЕ ПРОЦЕССЫ
ArticleName Условия получения окисленного графита с высокой способностью к терморасширению
DOI 10.17580/or.2023.05.03
ArticleAuthor Гильманшина Т. Р., Дубова И. В., Королева Г. А., Васильев Г. В.
ArticleAuthorData

Сибирский федеральный университет, Красноярск, РФ

Гильманшина Т. Р., доцент, канд. техн. наук, доцент, gtr1977@mail.ru

Дубова И. В., доцент, канд. техн. наук, доцент

Королева Г. А., доцент, канд. хим. наук, доцент

Васильев Г. В., аспирант

Abstract

Представлены результаты исследований по определению условий получения окисленного графита с максимальной способностью к дальнейшему терморасширению для использования в современных составах огнезащитных покрытий. Для изучения процессов интеркалирования выбраны природные чешуйчатые кристаллические графиты Тайгинского месторождения, определены условия проведения указанных процессов. Установлено, что значительное расширение тайгинских интеркалированных графитов начинается с 500 °С, при повышении температуры до 900 °С степень расширения увеличивается с 22 до 105. Проведенный рентгеноструктурный анализ подтверждает изменение межплоскостного расстояния за счет распределения интеркаланта между слоями графитовой матрицы.

keywords Графит, интекаляция графита, терморасширенный графит (ТРГ), огнезащитные покрытия, структура графита, технология расширения графита
References

1. Gilmanshina T. R., Lytkina S. I., Khudonogov S. A., Koroleva G. A., Borisyuk V. A., Kritsky D. Yu., Amelchenko V. N. Development of the state-of-the-art technologies for improvement of quality of cryptocrystalline graphite. Nanosistemy, Nanomaterialy, Nanotehnologii. 2018. Vol. 16, No. 1. pp. 83–101.
2. Myasnikova A. V., Gradinar Yu. S., Belova M. Yu., Isaev O. Yu., Kholkin V. A. Influence of the nature of graphite
on the characteristics of thermally expanded graphite materials. Actual problems of powder materials science. Proc. of International scientific and technical conference dedicated to the 85th anniversary of the birth of Academician V. N. Antsiferov. Perm, November 26–28, 2018. pp. 459–464.
3. Tursynbek S., Toresheva G. O., Kudaibergenov K. K., Lyubchyk S., Ongarbayev E. K., Mansurov Z. A. Thermoexpanded graphite: Properties and reception. Gorenie i Plazmokhimiya. 2016. Vol. 14, No. 2. pp. 150–156.
4. Kolchenko A. S., Finaenov A. I., Zabud′kov S. L., Afonina A. V. Influence of the fractional composition of dispersed graphite on the kinetics of formation and properties of interstitial phases in sulfuric acid. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2011. Vol. 54, No. 9. pp. 60–63.
5. Bratkov I. V. Development of a method for obtaining, electrochemical properties and application of oxidized natural and modified graphites. Diss. abstract for the degree of Candidate of Engineering Sciences. Ivanovo, 2015. 18 p.
6. Yudina T. F., Bratkov I. V., Ershova T. V., Smirnov N. N., Beilina N. Yu., Mayanov E. P. Optimization of the oxidation regime of natural graphite. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2014. Vol. 57, No. 5. pp. 11–13.
7. Antonova K. S., Gyrdymova A. A., Nozdryukhin A. D., Kobeleva A. R. Methods for producing intercalated graphite. Khimiya. Ekologiya. Urbanistika. 2021. Vol. 4. pp. 172–176.
8. Nair S. S., Saha T., Dey P., Bhadra S. Efficiency of different methods of oxidation of graphite: A key route of graphene preparation. Graphene and 2D Materials Technologies. 2021. Vol. 6, Iss. 1. pp. 1–11.
9. Tereshchenko M. D., Yaburov M. I., Lukoyanov V. Yu., Khimenko L. L. Review of the existing methods for intercaling graphite. Vestnik Permskogo Natsionalnogo Issledovatelskogo Politekhnicheskogo Universiteta. Aerokosmicheskaya Tekhnika. 2022. No. 71. pp. 174–181.
10. Moosa A. A., Abed M. S. Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry. 2021. Vol. 45, Iss. 3. pp. 493–519.
11. Sorokina N. E. Intercalated graphite compounds with acids: Synthesis, properties, application. Diss. abstract for the degree of Doctor of Chemical Sciences. Мoscow, 2007. 46 p.
12. Dimiev A. M., Shukhina K., Behabtu N., Pasquali M., Tour J. M. Stage transitions in graphite intercalation compounds: Role of the graphite structure. The Journal of Physical Chemistry C. 2019. Vol. 123, Iss. 31. pp. 19246–19253.
13. Kovalev I. N., Viktorov V. V., Baitinger E. Zh. Structure of residual graphite compounds obtained by hydrolysis of graphite bisulfate. Vestnik Yuzhno-Uralskogo Gosudarstvennogo Universiteta. Seriya: Matematika. Mekhanika. Fizika. 2005. No. 5. pp. 149–155.
14. Dideikin A. T., Sokolov V. V., Sakseev D. A., Baidakova M. V., Vul' A. Ya. Free graphene films obtained from thermally expanded graphite. Zhurnal Tekhnicheskoy Fiziki. 2010. Vol. 80, Iss. 9. pp. 146–149.
15. Yudina T. F., Bratkov I. V., Ershova T. V., Smirnov N. N., Beilina N. Yu. Influence of characteristics of natural graphite on its ability to oxidize. Izvestiya Vysshikh Uchebnykh Zavedeniy. Khimiya i Khimicheskaya Tekhnologiya. 2015. Vol. 58, No. 5. pp. 54–56.
16. Wang X., Wang G., Zhang L. Green and simple production of graphite intercalation compound used sodium bicarbonate as intercalation agent. BMC Chemistry. 2022. Vol. 16, Iss. 1. pp. 2–10.
17. Hassel O., Mark H. Ueber die kristallstruktur des graphits kropfmühl. Zeitschrift für Physik. 1924. Vol. 25. pp. 317–337.

Language of full-text russian
Full content Buy
Back