Журналы →  Obogashchenie Rud →  2023 →  №5 →  Назад

Название Processing of carbonaceous gold-containing concentrates by autoclave oxidation with the addition of nitric acid as a secondary oxidizer
DOI 10.17580/or.2023.05.04
Автор Gordeev D. V., Fomenko I. V., Shneerson Ya. M., Petrov G. V.
Информация об авторе

Saint Petersburg Mining University (Saint Petersburg, Russia)

Gordeev D. V., Postgraduate Student, danya.gordeev.2014@mail.ru

Petrov G. V., Professor, Doctor of Engineering Sciences, Associate Professor


Nietz Technologies (Saint Petersburg, Russia)
Fomenko I. V., CEO, PhD in Engineering Sciences
Shneerson Ya. M., Science and Development Director, Doctor of Engineering Sciences, Professor


This article describes the development of a method for reducing the sorption activity of carbonaceous matter (CM), which consists in stimulating oxidation and surface passivation during autoclave oxidation (AO) when exposed to a secondary oxidizer. A study was conducted to assess the fundamental usability of nitric acid as a secondary oxidizer in AO of double refractory gold-containing concentrates. Five refractory concentrates from various deposits with organic carbon contents of 0.5 to 3.6 wt% were tested; gold recovery during standard autoclave oxidation for these varied between 70 and 90 %. The addition of nitric acid has a predominantly positive effect on the main AO performance indicators. At the addition rate of 25 kg/t, the gold recovery increased by 10–15 %; at 100 kg/t, a more significant effect was observed with the recovery growing by up to 20 % as compared to the baseline level. The gold content in cyanidation tailings dropped several times: by a factor of 2–3 for low-carbon materials and by a factor of 5–17 for high-carbon materials. The degree of CM oxidation (removal) when adding 100 kg/t HNO3 reached 85 % (with a baseline value of approx. 10 %). It has been shown that gold recovery is directly proportional to the organic carbon content. The results obtained confirm the potential of using nitric acid as a CM surface oxidizer/passivator. This method minimizes gold losses associated with autoclave and cyanide preg-robbing. The technology proposed may be successfully introduced at existing autoclave enterprises without significant capital costs.

Ключевые слова Gold, refractory ores, preg-robbing, nitric acid, carbon, organic carbon, carbonaceous matter, autoclave leaching
Библиографический список

1. Zakharov B. A., Meretukov M. A. Gold: refractory ores. Moscow: Ore and Metals, 2013. 452 p.
2. Meretukov M. A., Rudakov V. V., Zlobin M. N. Geotechnological studies for the extraction of gold from mineral and technogenic raw materials. Moscow: Mining Book, 2011. 438 p.
3. Zhmurova V. V., Nemchinova N. V. Experience of integrated use of gold-bearing raw material in the production of precious metals. Zapiski Gornogo Instituta. 2018. Vol. 233. pp. 506–511.
4. Wu J., Ahn J., Lee J. Gold deportment and leaching study from a pressure oxidation residue of chalcopyrite concentrate. Hydrometallurgy. 2021. Vol. 201. DOI: 10.1016/j.hydromet.2021.105583

5. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield. Zapiski Gornogo Instituta. 2020. Vol. 242. pp. 218–227.
6. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Aburova V., Prokhorova E. Extraction of lowdimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023. Vol. 13, Iss. 1. DOI: 10.3390/min13010084
7. Chryssoulis S. L., McMullen J. Mineralogical investigation of gold ores. Gold ore processing. Project development and operations. Chap. 5. Elsevier Science, 2016. pp. 57–93.
8. Artemiev D. S., Krymsky R. Sh., Belyatsky B. V., Ashikhmin D. S. The age of mineralization of Mayskoe gold ore deposit (Central Chukotka): Results of Re-Os isotopic dating. Zapiski Gornogo Instituta. 2020. Vol. 243. pp. 266–278.
9. Miller J. D., Wan R. Y., Díaz X. Preg-robbing gold ores. Gold ore processing. Project development and operations. Chap. 49. Elsevier Science, 2016. pp. 885–907.
10. Vorobyov-Desyatovsky N. V., Epifanov A. V. Autoclave oxidation of doubly refractory gold ores. Problems and
solutions. Mineral resource complex of Russia — new frontiers and challenges. Materials of the 10th Mining forum. Moscow, October 7–9, 2014. pp. 1–8.
11. Selley R. С., Sonnenberg S. A. Elements of petroleum geology. 4ed. Academic Press, 2022. 608 p.
12. Mendoza D. M., Ichinose H., Konadu K. T., Sasaki K. Degradation of powder activated carbon by laccase-mediator system: Model experiments for the improvement of gold recovery from carbonaceous gold ore. Journal of Environmental Chemical Engineering. 2021. Vol. 9, Iss. 6. DOI: 10.1016/j.jece.2021.106375
13. Aleksandrova T. N., Heide G., Afanasova A. V. Assessment of refractory gold-bearing ores based of interpretation of thermal analysis data. Zapiski Gornogo Instituta. 2019. Vol. 235. pp. 30–37.
14. Qin H., Guo X., Tian Q., Yu D., Zhang L. Recovery of gold from sulphide refractory gold ore: Oxidation roasting pre-treatment and gold extraction. Minerals Engineering. 2021. Vol. 164, Iss. 3. DOI: 10.1016/j.mineng.2021.106822
15. Matveev A. I., Lebedev I. F., Vinokurov V. R., Lvov E. S. Scientific experimental bases for dry beneficiation of mineral ores. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 613–622.
16. Helm M., Vaughan J., Staunton W. P., Avraamides J. An investigation of the carbonaceous component of pregrobbing gold ores. Proc. of World gold conference 2009. Gauteng, South Africa, September 26–30, 2009. pp. 139–144.
17. Edahbi M., Mermillod-Blondin R., Plante B., Benzaazoua M. CIL gold loss characterization within oxidized leach tails: Creating a synergistic approach between mineralogical characterization, diagnostic leach tests, and preg-robbing tests. Minerals. 2019. Vol. 9, Iss. 9. DOI: 10.3390/min9090557
18. Vasileva A. A., Boduen A. Ya. Mineralogical features and processing of copper zinc-containing concentrates (Uchalinsky Mining and Processing Plant). Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2023. Vol. 334, No. 3. pp. 61–72.
19. Vasilieva А. А., Boduen А. Ya., Vasiliev R. Е. The feasibility of hydrometallurgical methods for enhancing the processing of copper concentrates. iPolytech Journal. 2022. Vol. 26, No. 2. pp. 320–335.
20. Boduen A. Ya., Poperechnikova O. Yu., Zalesov M. V., Grigoryeva V. A. Experimental testing of technologies for processing refractory gold-bearing raw materials. Tsvetnye Metally. 2022. No. 7. pp. 24–35.
21. Naboychenko S. S., Ni L. P., Shneerson Ya. M., Chugaev L. V. Autoclave hydrometallurgy of non-ferrous metals. Ekaterinburg: USTU–UPI, 2002. 940 p.
22. «Gold» for perseverance. The results of the year in gold mining. Interfax, December 24, 2018. URL: https://www.interfax.ru/business/643474 (accessed: 10.05.2023).
23. Zalesov M. V., Grigoreva V. A., Trubilov V. S., Boduen A. Ya. Designing of engineering solutions to enhance efficiency of high-copper gold-bearing ore processing. Gornaya Promyshlennost′. 2021. No. 5. pp. 51–56.
24. Shneerson Ya. M., Chugaev L. V. Pressure oxidation of double refractory gold bearing sulphide concentrates. Tsvetnye Metally. 2019. No. 8. pp. 55–66.
25. Fomenko I. V., Pleshkov M. A., Lyakh S. I., Laevskiy S. I. High-temperature pressure oxidation of double refractory ore. Tsvetnye Metally. 2020. No. 9. pp. 110–115.
26. The results of the feasibility study and approval of the construction of the Amur Hydrometallurgical Plant–2. Press release of February 11, 2019. URL: https://www.polymetalinternational.com/ru/investors-and-media/news/press-releases/11-02-2019/ (accessed: 10.06.2023).
27. Chan T., Collins M., Dennett J., Stiksma J., Ji J., Kalanchey R., Berezowsky R. Pilot plant pressure oxidation of refractory gold-silver concentrate from Eldorado Gold Corporation's Certej Project in Romania. Canadian Metallurgical Quarterly. 2015. Vol. 54, Iss. 3. DOI: 10.1179/1879139515Y.0000000018
28. Rusalev R. E., Rogozhnikov D. A., Naboichenko S. S. Nitric acid treatment of Olympiada deposit refractory goldbearing concentrate. Materials Science Forum. 2019. Vol. 946. pp. 541–546.
29. Anderson C. G. Applications of NSC pressure leaching. Pressure hydrometallurgy 2004. 34th Annual hydrometallurgy meeting of the Metallurgical Society of the Canadian Institute of Mining, Metallurgy & Petroleum. Banff, Alberta, 2004. pp. 855–886.
30. Anderson C. G. The application and economics of industrial NSC pressure leaching to copper ores and concentrates. Proc. of the 5th International conference «Copper 2003–Cobre 2003». Santiago, Chile, November 30–December 3, 2003. pp. 289–306.
31. Anderson C. G., Rosenberg E., Cao Y., Ratz L., Hart C. Single step separation and recovery of palladium using nitrogen species catalyzed pressure leaching and silica polyamine composites. Proc. of the 5th International symposium «Hydrometallurgy 2003». Vancouver, British Columbia, Canada, August 24–27, 2003. pp. 293–404.
32. Pat. RU 2732819 Russian Federation.

Language of full-text русский
Полный текст статьи Получить