Журналы →  Obogashchenie Rud →  2023 →  №5 →  Назад

Название Specific features of preparation of natural and technogenic mineral raw materials for the manufacture of photocatalytic composite materials
DOI 10.17580/or.2023.05.08
Автор Ogurtsova Yu. N., Strokova V. V., Nerovnaya S. V., Gubareva E. N.
Информация об авторе

Belgorod State Technological University named after V. G. Shukhov (Belgorod, Russia)

Ogurtsova Yu. N., Senior Researcher, Candidate of Engineering Sciences, Associate Professor, ogurtsova.y@yandex.ru
Strokova V. V., Director of the Innovative Scientific, Educational and Experimental-Industrial Center «Nanostructured Composite Materials», Doctor of Engineering Sciences, Professor
Nerovnaya S. V., Postgraduate Student
Gubareva E. N., Senior Researcher, Candidate of Engineering Sciences


This article examines Russia’s domestic and foreign experience in the preparation and use of natural, technogenic, and synthesized mineral raw materials based on silica, aluminosilicates, and carbonates as components in photocatalytic composite materials (PCMs). The prospects are shown for using overburden and host rocks, crushing screenings, processing waste, metallurgical slag, and fly ash as effective carriers of a photocatalytic agent for subsequent use in the manufacture of building materials. The paper discusses acid-base surface properties and their dependence on the composition of the raw materials used, relevant preparation methods and conditions and types of mechanical impacts. Methods for activating raw materials have been studied in order to control the acid-base surface properties with the aim of increasing acidity for the effective synthesis of PCMs and ensuring high photocatalytic activity of the final products. Physical-mechanical, chemical, and physical-chemical (thermal, including hydrothermal) raw material preparation methods were used. These were applied in combination and/or in stages: raw materials after physical and mechanical exposure (crushing) were subjected to chemical activation (exposure to alkalis, acids, solvents), followed by heat treatment (roasting to remove water and impurities) or hydrothermal treatment (to obtain a special porous structure). These treatments increase the surface area of the particles and the number of defects both on the surface and within the crystalline structure, trigger mineral transformation (amorphization, formation of new phases, polymorphic and polytypic modifications), improve concentration of active centers and surface acidity, which promotes more efficient precipitation and photocatalyst precursor adhesion during the synthesis of a photocatalytic composite material and higher photocatalytic activity of the final product.
This work was carried out within the framework of state assignment No. FZWN-2023-0006 of the Ministry of Science and Higher Education of the Russian Federation.

Ключевые слова Natural raw materials, waste, ore processing, technogenic raw materials, silica, aluminosilicate, carbonate, polymineral raw materials, acid-base centers, photocatalytic composite material
Библиографический список

1. Ozhogina E. G., Kotova O. V., Yakushina O. A., Zhukova V. E. On the possibility of secondary use of mining wastes. Geoekologiya. Inzhenernaya Geologiya, Gidrogeologiya, Geokriologiya. 2020. No. 2. pp. 58–63.
2. Novoselov A. L., Petrov I. V. Modeling utilization of secondary mineral resources. Gornyi Zhurnal. 2019. No. 7. pp. 80–84.
3. Sychev M. M., Minakova T. S., Slizhov Yu. G., Shilova O. A. Acid-basic characteristics of the surface of solids and control of the properties of materials and composites. St. Petersburg: Khimizdat, 2016. 276 p.
4. Belov D. V., Uspenskaya G. I. Influence of photon irradiation on physico-chemical processes and bactericidal properties of real surface of silicon. Orbital. 2018. No. 1. pp. 6–18.
5. Gerasimova L. G., Nikolaev A. I., Shchukina E. S., Safonova I. V. Apatite-nepheline ore mill tailings — A source of functional materials. Gornyi Zhurnal. 2020. No. 9. pp. 78–84.
6. Shilova O. A., Kovalenko A. S., Nikolaev A. M., Mjakin S. V., Sinelnikov A. A., Chelibanov V. P., Gorshkova Y. E., Tsvigun N. V., Ruzimuradov O. N., Kopitsa G. P. Surface and photocatalytic properties of sol–gel derived TiO2@SiO2 coreshell nanoparticles. Journal of Sol-Gel Science and Technology. 2023. Vol. 108. pp. 263–273.
7. Datsko T. Ya., Zelentsov V. I. Nano-TiO2/diatomite composite: Synthesis, structure and heat resistance. Elektronnaya Obrabotka Materialov. 2019. No. 3. pp. 1–14.
8. Ovchinnikov N. L., Vinogradov N. M., Gordina N. E., Butman M. F. Application of activating influences in obtaining TiO2-pillared montmorillonite with improved photocatalytic properties. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya: Khimiya i Khimicheskaya Tekhnologiya. 2023. Vol. 66, No. 5. pp. 59–71.
9. Bondarenko V. V., Ruello M. L., Bondarenko A. V., Petukhova G. A., Dubinina L. A. A study of the adsorption–structural parameters and photoactivity of TiO2/kaolinite composite. Fizikokhimiya Poverkhnosti i Zashchita Materialov. 2019. Vol. 55, No. 2. pp. 127–143.
10. Pat. 2478413 Russian Federation.
11. Pakhnutova E. A., Slizhov Yu. G. Synthesis of silokhrom S-120 grafted with transition-metal acetylacetonate layers and its acid-base and chromatographic properties. Neorganicheskie Materialy. 2015. Vol. 51, No. 6. p. 634.
12. Romanova R. G., Petrova E. V. Acid-base properties of the surface of aluminum oxides. Vestnik Kazanskogo Tekhnologicheskogo Universiteta. 2006. No. 6. pp. 73–90.
13. Gubareva E. N., Ogurtsova Yu. N., Strokova V. V., Labuzova M. V. Comparative activity evaluation for silica raw materials and photocatalytic composite materials based on them. Obogashchenie Rud. 2019. No. 6. pp. 25–30.
14. Vysotskaya M. A., Shekhovtsova S. Yu., Kuznetsov D. A. Reaction ability of alternative mineral dispersed materials as a tool for developing efficient road composites. Vestnik Voronezhskogo Gosudarstvennogo Universiteta Inzhenernykh Tekhnologiy. 2019. Vol. 81, No. 1. pp. 282–288.
15. Markov A. Y., Strokova V. V., Markova I. Y., Stepanenko M. A. Physico-chemical properties of fuel ashes as factor of interaction with cationic bitumen emulsion. Lecture Notes in Civil Engineering. 2021. Vol. 95. pp. 294–300.
16. Ermolovich E. A. The effect of grinding on the donoracceptor properties of the surface of the components of the laying materials. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2013. No. 5. pp. 191–198.
17. Tsyganova T. A., Myakin S. V., Kuryndin I. S., Rakhimova O. V. Effect of formation conditions on the functional composition of the surface of high-silica porous glass. Fizika i Khimiya Stekla. 2018. Vol. 44, No. 6. pp. 644–647.
18. Trautvain A. I., Yadykina V. V. Investigation of the effect of grinding modes on the reactivity of mineral powders. Vestnik Kharkovskogo Natsionalnogo Avtomobilno-dorozhnogo Universiteta. 2013. No. 61–62. pp. 248–254.
19. Ryazantseva M. V., Bunin I. Z. Modifying acid–base surface properties of calcite, fluorite and scheelite under electromagnetic pulse treatment. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2015. No. 5. pp. 140–145.

20. Adilkhodjaev A. I., Makhamataliev I. M., Tsoy V. M., Shaumarov S. S. Forecasting the efficiency of introduction of mineral fillers in cement composites. Nauchno-tekhnicheskiy Vestnik Bryanskogo Gosudarstvennogo Universiteta. 2019. No. 1. pp. 105–112.
21. Li C., Sun L., Niu J., Reka A. A., Feng P., Garcia H. Core-shell Bi-containing spheres and TiO2 nanoparticles coloaded on kaolinite as an efficient photocatalyst for methyl orange degradation. Catalysis Communications. 2023. Vol. 175. DOI: 10.1016/j.catcom.2023.106609
22. Pat. US 2010/0266470 A1 USA.
23. Liao G., Yao W., Zuo J. Preparation and characterization of zeolite/TiO2 cement-based composites with excellent photocatalytic performance. Materials. 2018. Vol. 11. DOI: 10.3390/ma11122485
24. Duranoğlu D. Preparation of TiO2/perlite composites by using 23-1 fractional factorial design. Journal of the Turkish Chemical Society, Section A: Chemistry. 2016. Vol. 3, Iss. 3. pp. 299–312.
25. Giannouri M., Kalampaliki Th., Todorova N., Giannakopoulou T., Boukos N., Petrakis D., Vaimakis T., Trapalis C. One-step synthesis of TiO2/perlite composites by flame spray pyrolysis and their photocatalytic behavior. International Journal of Photoenergy. 2013. Vol. 2013. DOI: 10.1155/2013/729460
26. Meng J., Zhong J., Xiao H., Ou J. Interfacial design of nano-TiO2 modified fly ash-cement based low carbon composites. Construction and Building Materials. 2021. Vol. 270. DOI: 10.1016/j.conbuildmat.2020.121470
27. Tu Y., Zhong J., Ding H., Zhang H., Lv G., Zhang J., Hou X. Preparation of fly ash supporting nano-TiO2 composite photocatalyst by a wet mechanical grinding method. Chemical Physics Letters. 2022. Vol. 805. DOI: 10.1016/j.cplett.2022.139978
28. Jiang Y., Liu A. Cornstalk biochar-TiO2 composites as alternative photocatalyst for degrading methyl orange. Environmental Science and Pollution Research. 2023. Vol. 30. pp. 31923–31934.
29. Liao G., Yao W. Upcycling of waste concrete powder into a functionalized host for nano-TiO2 photocatalyst: Binding mechanism and enhanced photocatalytic efficiency. Journal of Cleaner Production. 2022. Vol. 366. DOI: 10.1016/j.jclepro.2022.132918
30. Jimenez-Relinque E., Lee S. F., Plaza L., Castellote M. Synergetic adsorption–photocatalysis process for water treatment using TiO2 supported on waste stainless steel slag. Environmental Science and Pollution Research. 2022. Vol. 29. pp. 39712–39722.
31. Shi J., Kuwahara Y., An T., Yamashita H. The fabrication of TiO2 supported on slag-made calcium silicate as low-cost photocatalyst with high adsorption ability for the degradation of dye pollutants in water. Catalysis Today. 2017. Vol. 281. pp. 21–28.
32. Zhang X., Su X., Gao W., Wang F., Liu Z., Zhan J., Liu B., Wang R., Liu H. Photocatalytic quartz fiber felts with carbon-connected TiO2 nanoparticles for capillarity-driven continuous-flow water treatment. Applied Physics A. 2018. Vol. 124. DOI: 10.1007/s00339-018-1870-4
33. Gu S., Liu X., Wang H., Liu Z., Xing H., Yu L. Preparation and characterization of TiO2 photocatalytic composites supported by blast furnace slag fibres for wastewater degradation. Ceramics International. 2023. Vol. 49, Iss. 3. pp. 5180–5188.
34. Rincón G. J., La Motta E. J. A fluidized-bed reactor for the photocatalytic mineralization of phenol on TiO2- coated silica gel. Heliyon. 2019. Vol. 5, Iss. 6. DOI: 10.1016/j.heliyon.2019.e01966
35. Phattepur H., Hiremath P. G. Fabrication of Al2O3 supported TiO2 membranes for photocatalytic applications. Materials Today: Proceedings. 2022. Vol. 65, Pt. 8. pp. 3694–3699.
36. Bernardes J. C., Müller D., Latocheski E., Domingos J. B., Fey T., Rambo C. R. Microchanneled biomorphous Al2O3 coated with TiO2 aerogel for photocatalytic reduction of 4-nitrophenol. Ceramics International. 2022. Vol. 48, Iss. 11. pp. 15946–15950.
37. Sun T., Wei J., Zhou C., Wang Y., Shu Z., Zhou J., Chen J. Facile preparation and enhanced photocatalytic hydrogen evolution of cation-exchanged zeolite LTA supported TiO2 photocatalysts. International Journal of Hydrogen Energy. 2023. Vol. 48, Iss. 37. pp. 13851–13863.
38. Cui W., Li J., Chen L., Dong X., Wang H., Sheng J., Sun Y., Zhou Y., Dong F. Nature-inspired CaCO3 loading TiO2 composites for efficient and durable photocatalytic mineralization of gaseous toluene. Science Bulletin. 2020. Vol. 65, Iss. 19. pp. 1626–1634.
39. Li F., Liu G., Liu F., Yang S. A WO3–TiO2 nanorod/CaCO3 photocatalyst with degradation-regeneration double sites for NO2-inhibited and durable photocatalytic NO. Chemosphere. 2023. Vol. 324. DOI: 10.1016/j.chemosphere.2023.138277
40. Strokova V. V., Gubareva E. N., Baskakov P. S., Ogurtsova Yu. N., Antonenko M. V., Abzalilova A. V. Photocatalytic activity of composite material obtained by the method of sol-gel deposition of TiO2 on silica support. Vestnik Tekhnologicheskogo Universiteta. 2020. Vol. 23, No. 10. pp. 5–9.
41. Rimoldi L., Meroni D., Falletta E., Ferretti A. M., Gervasini A., Cappelletti G., Ardizzone S. The role played by different TiO2 features on the photocatalytic degradation of paracetamol. Applied Surface Science. 2017. Vol. 424, Iss. 2. pp. 198–205.
42. Belousov P. E., Karelina N. D., Morozov I. A., Rudmin M. A., Milyutin V. V., Nekrasova N. A., Rumyantseva A. O., Zakusina O. V., Krupskaya V. V. Zeolite-containing tripoli of Khotynets deposit (Orel region): Mineral composition, sorption properties and formation conditions. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2023. Vol. 334, No. 5. pp. 70–84.
43. Buglov N. A., Butakova L. A., Shakirova E. V., Averkina E. V. Use of silicon production wastes as additives improving the process properties of the cement slurries. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2022. Vol. 333, No. 6. pp. 122–130.
44. Brichkin V. N., Kurtenkov R. V., Eldeeb A. B., Bormotov I. S. State and development options for the raw material base of aluminum in non-bauxite regions. Obogashchenie Rud. 2019. No. 4. pp. 31–37.
45. Tanabe K. Solid acids and bases. Moscow: Mir, 1973. 183 с.
46. Ravi M., Sushkevich V. L., Bokhoven J. A. On the location of Lewis acidic aluminum in zeolite mordenite and the role of framework-associated aluminum in mediating the switch between Brønsted and Lewis acidity. Chemical Science. 2021. Vol. 12, Iss. 11. pp. 4094–4103.
47. Grishin I. S., Smirnov N. N., Smirnova D. N. Mechanochemical modification of activated carbon in air. Zhurnal Prikladnoy Khimii. 2020. Vol. 93, No. 11. pp. 1560–1566.
48. Martins R. C., Rezende M. J. C., Nascimento M. A. C., Nascimento R. S. V., Ribeiro S. P. D. S. Synergistic action of montmorillonite with an intumescent formulation: The impact of the nature and the strength of acidic sites on the flame-retardant properties of polypropylene composites. Polymers (Basel). 2020. Vol. 12, Iss. 12. DOI: 10.3390/polym12122781
49. Gerasimov A. M., Arsentyev V. A. Layered silicates and their effects on mineral processing. Obogashchenie Rud. 2018. No. 5. pp. 22–28.

Language of full-text русский
Полный текст статьи Получить