Journals →  Tsvetnye Metally →  2023 →  #10 →  Back

MATERIALS SCIENCE
ArticleName Temperature and time parameters of artificial ageing and their effect on the structure and properties of extruded semi-finished products made of high-strength aluminium alloy V-1977
DOI 10.17580/tsm.2023.10.09
ArticleAuthor Shlyapnikova T. A., Somov A. V., Ivanov A. L., Selivanov A. A.
ArticleAuthorData

All-Russian Scientific Research Institute of Aviation Materials at the Kurchatov Institute National Research Centre, Moscow, Russia

T. A. Shlyapnikova, Deputy Head of Laboratory, Candidate of Technical Science
A. V. Somov, Lead Engineer, e-mail: andrey-somov@inbox.ru
A. L. Ivanov, Lead Engineer
A. A. Selivanov, Head of Laboratory, Candidate of Technical Science

Abstract

Development of advanced high-strength aluminium alloys is one of the most relevant problems in the area of aviation materials, aimed at enhanced weight efficiency and durability of new-generation air- and spacecrafts. This paper looks at the effect of temperature and time parameters of artificial ageing on the properties and structure of extruded sections made of alloy V-1977 up to 60 mm thick, with the aim to identify a heat treatment regime that would ensure the desired combination of properties. The authors used optical and scanning electron microscopy to examine the structure and phase state of V-1977 sections. It was found that maximum strength is reached after the first ageing step as a result of precipitation of disperse particles of the strengthening phase, whereas the alloy loses some strength after the second ageing step as these particles get bigger. As part of this study, the authors determined the tensile properties, as well as corrosion resistance and fracture toughness of extruded V-1977 sections after a one- and two-step ageing process. The parameters of the two-step (T2) artificial ageing of extruded V-1977 sections were established that ensure a high strength (σв = 700 MPa, σ0.2 = 675 MPa), acceptable corrosion resistance (proneness to layer corrosion — 4 points, to intercrystalline corrosion — max. 60 μm) and high fracture toughness (37.2 MPa·m1/2), which are necessary for basic structural components of new-generation air- and spacecrafts.
This research was carried out as part of implementing Comprehensive Research Initiative 8.1 “High-Strength Weldable Aluminium and Aluminium-Lithium Alloys with Low Density and High Fracture Toughness” (“Strategic Areas for the Development of Materials and Processing Techniques for the Period till 2030”), under Governmental Contract No. 21411.1770290019.18.008 dated 01/03/2021.

keywords High-strength aluminium alloy V-1977, Al – Zn – Mg – Cu alloys, step ageing, fracture toughness, extruded semi-finished products, structure, mechanical properties, heat treatment
References

1. Kablov E. N. Innovative developments by VIAM State Research Centre of the Russian Federation as part of implementing the initiative: Strategic Areas for the Development of Materials and Processing Techniques for the Period till 2030. Aviatsionnye materialy i tekhnologii. 2015. No. 1. pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33
2. Fridlyander I. N. Aluminium alloys in aircrafts in the period of 1970-2015. Tekhnologiya legkikh splavov. 2002. No. 4. pp. 12–17.
3. Senatorova O. G., Antipov V. V., Bronz A. V., Somov A. V. et al. Highstrength alloys and superalloys of the conventional Al – Zn – Mg – Cu system, their role in engineering and potential development. Tekhnologiya legkikh splavov. 2016. No. 2. pp. 43–49.
4. Nechaykina T. A., Blinova N. E., Ivanov A. L., Kozlova O. Yu. et al. Understanding the effect of homogenization and quenching modes on the structure and mechanical properties of rolled rings made of alloy V95o.ch.-T2. Trudy VIAM. 2018. No. 10. Paper 04. DOI: 10.18577/2307-6046-2018-0-10-27-36
5. Troyanov V. A., Uksusnikov A. N., Senatorova O. G., Pushin V. G. Structural and phase changes occurring in high-strength Al – Zn – Mg – Cu alloys during two-step ageing. Materialovedenie. 2013. No. 1. pp. 11–16.
6. Fridlyander I. N., Senatorova O. G., Tkachenko E. A., Molostova I. I. Development and application of high-strength Al – Zn – Mg – Cu alloys for aerospace engineering. 75 Years. Aviation Materials. Moscow : VIAM, 2007. pp. 155–163.
7. Kablov E. N. New-generation materials and digital processing techniques. Vestnik Rossiyskoy akademii nauk. 2020. Vol. 90, No. 4. pp. 331–334. DOI: 10.31857/S0869587320040052
8. Kurs M. G. Predicting the strength properties of aircraft skin made of wrought aluminium alloy V95o.ch.-T2 using the integral corrosion coefficient. Trudy VIAM. 2018. No. 5. pp. 101-109. DOI: 10.18577/2307-6046-2018-0-5-101-109
9. Antipov V. V., Senatorova O. G., Sidelnikov V. V., Popov V. I. et al. Development, adoption and application of extra-strength Al – Zn –Mg – Cu – Zr alloys for aircraft and rocket engineering. All Materials. Encyclopedic reference book. 2014. No. 2. pp. 7–11.
10. Romanova R. R., Uksusnikov A. N., Senatorova O. G., Fridlyander I. N. Effect of step ageing on the structure, mechanical and corrosion properties of alloy V95pch. Fizika metallov i metallovedenie. 1995. Vol. 80, Iss. 4. pp. 110–118.
11. Senatorova O. G., Serebrennikova N. Yu., Antipov V. V., Ivanov A. L. et al. Examining the structure and properties of 80 mm thick plate made of alloy V95pchT2. Tekhnologiya legkikh splavov. 2016. No. 2. pp. 37–42.
12. Fridlyander I. N., Senatorova O. G., Tkachenko E. A. High-strength Al – Zn – Mg – Cu alloys. Mechanical engineering: Encyclopedia in 40 volumes. Vol. II-3. Non-ferrous metals and alloys. Composite metallic materials. Moscow : Mashinostroenie, 2001. pp. 94–128.
13. Elagin V. I., Ber L. B., Rostova T. D., Ukolova O. G. Optimisation of three-step ageing modes applicable to Al – Zn – Mg – Cu alloys. Tekhnologiya legkikh splavov. 2009. No. 2. pp. 12–19.
14. Ber L. B. Step ageing of aluminium alloys. Tekhnologiya legkikh splavov. 2010. No. 3. pp. 5–21.
15. Fridlyander I. N. Production, investigation and application of aluminium alloys: Selected works: Marking 100th birthday. Ed. by E. N. Kablov. Moscow : Nauka, 2013. 291 p.
16. Kablov E. N., Nechaykina T. A., Somov A. V., Ivanov A. L. et al. Effect of heat treatment on the structure and properties of extruded semi-finished products made of innovative extra-strength aluminium alloy V-1977. Metallovedenie i termicheskaya obrabotka metallov. 2023. No. 1(811). pp. 28–33.
17. Levchuk V. V., Trapeznikov A. V., Pentyukhin S. I. Corrosion-resistant casting aluminium alloys (Review). Trudy VIAM. 2018. No. 7. 04. DOI: 10.18577/2307-6046-2018-0-7-33-40
18. Kirichok P. F. Corrosion cracking of aluminium alloys and stainless steels: Key features and test methods (A review). Trudy VIAM. 2018. No. 7. 12. DOI: 10.18577/2307-6046-2018-0-7-106-116
19. Nechaykina T. A., Somov A. V., Ivanov A. L., Kozlova O. Yu. Understanding the effect of T1 heat strengthening mode on the structure and properties of extruded strips made of innovative extra-strength aluminium alloy of the Al – Zn – Mg – Cu system. Materialovedenie. 2020. No. 10. pp. 11–16.
20. Antipov V. V. Perspective development of aluminium, magnesium and titanium alloys for aerospace engineering products. Aviatsionnye materialy i tekhnologii. 2017. No. S. pp. 186–194. DOI: 10.18577/2071-9140-2017-0-S-186-194
21. Astashkin A. I., Babanov V. V., Selivanov A. A., Tkachenko E. A. Structure and properties of solid forgings with low residual stresses made of aluminium alloy 1933sb of balanced composition. Trudy VIAM. 2021. No. 7. 02. DOI: 10.18577/2307-6046-2021-0-7-13-21
22. Nechaykina T. A., Oglodkov M. S., Ivanov A. L., Kozlova O. Yu. et al. Quenching of wide clad cover sheets made of aluminium alloy V95p.ch. in a continuous heat treatment line. Trudy VIAM. 2021. No. 11. 03. DOI: 10.18577/2307-6046-2021-0-11-25-33
23. Nefedova Yu. N., Shlyapnikova T. A., Ivanov A. L., Sidelnikov V. V. Techniques to bring down residual stresses during quenching of high-strength aluminium alloys. Trudy VIAM. 2023. No. 7. 03. DOI: 10.18577/2307-6046-2023-0-7-23-33
24. Astashkin A. I., Babanov V. V., Selivanov A. A., Tkachenko E. A. et al. Hardenability of solid forgings made of Al – Zn – Mg – Cu alloys enhanced due to balanced doping with zinc and magnesium. Aviatsionnye materialy i tekhnologii. 2021. No. 2. 04. DOI: 10.18577/2713-0193-2021-0-2-35-42
25. Huan Zhao, De Geuser F., Kwiatkowski da Silva A., Szczepaniak A. et al. Segregation assisted grain boundary precipitation in a model Al – Zn – Mg – Cu alloy. Acta Materialia. 2018. Vol. 156. pp. 318–329.
26. Cassell A. M., Robson J. D., Race C. P., Eggeman A. et al. Dispersoid composition in zirconium containing Al – Zn – Mg – Cu (AA7010) aluminium alloy. Acta Materialia. 2019. Vol. 169. pp. 135–146.
27. Senatorova O. G., Kablov E. N., Antipov V. V., Somov A. V. et al. Highstrength heat-treatable aluminium alloy and article made thereof. Patent RF, No. 2556849. Applied: 14.04.2014. Published: 20.07.2015.
28. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
29. GOST 9.904–82. Unified system of corrosion and ageing protection. Aluminium alloys. Accelerated test method for exfoliating corrosion. Introduced: 01.07.1983.
30. GOST 9.021–74. Unified system of corrosion and ageing protection. Aluminium and aluminium alloys. Accelerated test methods for intercrystalline corrosion. Introduced: 01.01.1975.
31. GOST 25.506–85. Design, calculation and strength testing. Methods of mechanical testing of metals. Determination of fracture toughness characteristics under the static loading. Introduced: 01.01.1986.

Language of full-text russian
Full content Buy
Back