ArticleAuthorData |
Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
A. S. Gnedenkov, Lead Researcher, Professor of the Russian Academy of Sciences, Doctor of Сhemical Sciences, e-mail: asg17@mail.com S. L. Sinebryukhov, Deputy Director Responsible for Research, Corresponding Member of the Russian Academy of Sciences, Doctor of Сhemical Sciences, Associate Professor, e-mail: sls@ich.dvo.ru V. S. Filonina, Junior Researcher, e-mail: filonina.vs@gmail.com S. V. Gnedenkov, Director, Corresponding Member of the Russian Academy of Sciences, Doctor of Сhemical Sciences, Professor, e-mail: svg21@hotmail.com |
References |
1. Gnedenkov A. S., Sinebryukhov S. L., Filonina V. S., Egorkin V. S. et al. The detailed corrosion performance of bioresorbable Mg – 0.8Ca alloy in physiological solutions. Journal of Magnesium and Alloys. 2022. Vol. 10, No. 5. pp. 1326–1350. 2. Kiselevskiy M. V., Anisimova N. Yu., Polotskiy B. E., Martynenko N. S. et al. Biodegradable magnesium alloys as innovative materials for medical application (Review). Sovremennye tehnologii v medicine. 2019. Vol. 11, No. 3. pp. 146–157. 3. Volkov D. A., Leonov A. A., Mukhina I. Yu., Uridiya Z. P. Potential application of biodegradable magnesium alloys (Review). Trudy VIAM. 2019. No. 3. pp. 35–43. 4. Khlusov I. A., Mitrichenko D. V., Prosolov A. B., Nikolaeva O. O. et al. A brief overview of biomedical properties and application of magnesium alloys for bioengineering of bone tissue. Bulletin of Siberian Medicine. 2019. Vol. 18, No. 2. pp. 274–286. 5. Drobyshev A. Yu., Redko N. A., Komissarov A. A., Gurganchova Z. M. Magnesium alloy based biodegradable structures: Development and prospective applications. Innovative structural and functional materials: Research papers of the International Youth Conference of Science and Technology. Ed. by S. P. Buyakova. 2022. pp. 257–260. 6. Frolova T. S., Boykov A. A., Tarkova A. R., Orishchenko K. E. et al. Understanding the cytotoxic effect of magnesium alloys on cell cultures. Patologiya krovoobrashcheniya i kardiokhirurgiya. 2019. Vol. 23, No. 3. pp. 2–29. 7. Mei D., Lamaka S. V., Gonzalez J., Feyerabend F. et al. The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corrosion Science. 2019. Vol. 147. pp. 81–93. 8. Chen L., Guo C., Blawert C., Yang J. et al. Evaluation of the biodegradation product layer on Mg – 1Zn alloy during dynamical strain. Journal of Magnesium and Alloys. 2021. Vol. 9, No. 5. pp. 1820–1833. 9. Chatterjee S., Saxena M., Padmanabhan D., Jayachandra M., Pandya H. J. Futuristic medical implants using bioresorbable materials and devices. Biosensors and Bioelectronics. 2019. Vol. 142. 111489. 10. Gnedenkov A. S., Sinebryukhov S. L., Filonina V. S., Gnedenkov S. V. Hydroxyapatite-containing PEO-coating design for biodegradable Mg – 0.8Ca alloy: Formation and corrosion behaviour. Journal of Magnesium and Alloys. 2022. DOI: 10.1016/j.jma.2022.12.002 11. Gnedenkov A. S., Sinebryukhov S. L., Filonina V. S., Ustinov A. Y. et al. New Polycaprolactone-Containing Self-Healing Coating Design for Enhance Corrosion Resistance of the Magnesium and Its Alloys. Polymers. 2023. Vol. 15, No. 1. 202. 12. Gnedenkov A. S., Filonina V. S., Sinebryukhov S. L., Gnedenkov S. V. A Superior Corrosion Protection of Mg Alloy via Smart Nontoxic Hybrid Inhibitor-Containing Coatings. Molecules. 2023. Vol. 28, No. 6. 2538. 13. Santos-Coquillat A., Esteban-Lucia M., Martinez-Campos E., Mohedano M. et al. PEO coatings design for Mg – Ca alloy for cardiovascular stent and bone regeneration applications. Materials Science and Engineering: C. 2019. Vol. 105. 110026. 14. Fattah-alhosseini A., Molaei M., Nouri M., Babaei K. Antibacterial activity of bioceramic coatings on Mg and its alloys created by plasma electrolytic oxidation (PEO): A review. Journal of Magnesium and Alloys. 2022. Vol. 10, No. 1. pp. 81–96. 15. Gnedenkov A. S., Sinebryukhov S. L., Mashtalyar D. V., Imshinetskiy I. M. et al. Effect of Microstructure on the Corrosion Resistance of TIG Welded 1579 Alloy. Materials. Multidisciplinary Digital Publishing Institute. 2019. Vol. 12, No. 16. 2615. DOI: 10.3390/ma12162615 16. Vaghefinazari B., Lamaka S. V., Blawert C., Serdechnova M. et al. Exploring the corrosion inhibition mechanism of 8-hydroxyquinoline for a PEOcoated magnesium alloy. Corrosion Science. 2022. Vol. 203. 110344. 17. Chirkunov A. A., Rakoch A. G., Monakhova E. V., Gladkova A. A. et al. Corrosion protection of magnesium alloy by PEO-coatings containing sodium oleate. International Journal of Corrosion and Scale Inhibition. 2019. Vol. 8, No. 4. pp. 1170–1188. 18. Petrova E., Serdechnova M., Shulha T., Lamaka S. V. et al. Use of synergistic mixture of chelating agents for in situ LDH growth on the surface of PEO-treated AZ91. Scientific Reports. 2020. Vol. 10, No. 1. 8645. 19. Maki Y., Kashiwagi S., Kimizuka Y. Laser vaccine adjuvants: Light-augmented immune responses. Vaccine. 2021. Vol. 39, No. 46. pp. 6805–6812. 20. Feng Y., Chen S., Frank Cheng Y. Stearic acid modified zinc nano-coatings with superhydrophobicity and enhanced antifouling performance. Surface and Coatings Technology. 2018. Vol. 340. pp. 55–65. 21. Liu X., Zhang T. C., He H., Ouyang L., Yuan S. A stearic Acid/CeO2 bilayer coating on AZ31B magnesium alloy with superhydrophobic and selfcleaning properties for corrosion inhibition. Journal of Alloys and Compounds. 2020. Vol. 834. 155210. 22. Hu C., Xie X., Ren K. A facile method to prepare stearic acid-TiO2/zinc composite coating with multipronged robustness, self-cleaning property, and corrosion resistance. Journal of Alloys and Compounds. 2021. Vol. 882. 160636. 23. Shi S. C., Peng Y. Q. Preparation and tribological studies of stearic acid-modified biopolymer coating. Progress in Organic Coatings. 2020. Vol. 138. 105304. 24. Khalifeh S., Burleigh T. D. Super-hydrophobic stearic acid layer formed on anodized high purified magnesium for improving corrosion resistance of bioabsorbable implants. Journal of Magnesium and Alloys. 2018. Vol. 6, No. 4. pp. 327–336. 25. Zhang Q., Wan Y., Li Y., Yang S., Yao W. Friction reducing behavior of stearic acid film on a textured aluminum substrate. Applied Surface Science. 2013. Vol. 280. pp. 545–549. 26. Zhang L., Mohammed E. A. A., Adriaens A. Synthesis and electrochemical behavior of a magnesium fluoride-polydopamine-stearic acid composite coating on AZ31 magnesium alloy. Surface and Coatings Technology. 2016. Vol. 307. pp. 56–64. 27. Dhanasekaran N. P. D., Muthuvelu K. S., Arumugasamy S. K. Recent advancement in biomedical applications of polycaprolactone and polycaprolactone-based materials. Encyclopedia of Materials: Plastics and Polymers. 2022. pp. 795–809. 28. Lykins W. R., Bernards D. A., Schlesinger E. B., Wisniewski K., Desai T. A. Tuning polycaprolactone degradation for long acting implantables. Polymer. 2022. Vol. 262. 125473. 29. Cao F., Shi Z., Song G. L., Liu M., Atrens A. Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–X alloys: X=Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corrosion Science. 2013. Vol. 76. pp. 60–97. 30. Sezer N., Evis Z., Kayhan S. M., Tahmasebifar A., Koç M. Review of magnesium-based biomaterials and their applications. Journal of Magnesium and Alloys. 2018. Vol. 6, No. 1. pp. 23–43. 31. Gnedenkov A. S., Sinebryukhov S. L., Filonina V. S., Plekhova N. G., Gnedenkov S. V. Smart composite antibacterial coatings with active corrosion protection of magnesium alloys. Journal of Magnesium and Alloys. 2022. Vol. 10, No. 12. pp. 3589–3611. |