Журналы →  Горный журнал →  2023 →  №11 →  Назад

АЭРОЛОГИЯ И ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ
Название Оценка аэродинамического влияния движущейся клети на работу главного вентилятора
DOI 10.17580/gzh.2023.11.10
Автор Семин М. А., Бублик С. А., Зайцев А. В., Мальцев С. В.
Информация об авторе

Горный институт УрО РАН, Пермь, Россия

Семин М. А., ученый секретарь, зав. лабораторией математического моделирования геотехнических процессов, д-р техн. наук, seminma@inbox.ru
Бублик С. А., младший научный сотрудник
Зайцев А. В., зав. лабораторией развития горного производства, д-р техн. наук
Мальцев С. В., зав. сектором рудничной вентиляции, канд. техн. наук

Реферат

Исследовано влияние поршневого эффекта при движении большегрузной клети в стволе на параметры работы главной вентиляторной установки. Проведено многопараметрическое численное моделирование турбулентного течения воздуха в стволе с учетом подвижных стенок расчетной области. Показано, что численно рассчитанные добавочные сопротивления хорошо соотносятся с данными измеренных колебаний депрессии главной вентиляторной установки на реальном исследуемом объекте. Предложена общая методика учета добавочного сопротивления, вызванного поршневым эффектом от движущейся клети. Показано, что при максимальной скорости движения клети 12 м/с создаваемое ею добавочное давление может оказывать существенное влияние на работу главного вентилятора.

Исследование выполнено при финансовой поддержке Минобрнауки РФ в рамках государственного задания (проект № 122030100425-6).

Ключевые слова Рудничная вентиляция, шахтный ствол, клеть, поршневой эффект, численное моделирование, лобовое сопротивление, главная вентиляторная установка
Библиографический список

1. Maltsev S. V., Semin M. A., Kormshchikov D. S. A method to determine aerodynamic drag coefficient in copper–nickel mine shafts. Journal of Mining Science. 2020. No. 6. pp. 170–178.
2. Semin M. A., Grishin E. L., Levin L. Yu., Zaitsev A. V. Automated ventilation control in mines. Challenges, state of the art, areas for improvement. Journal of Mining Institute. 2020. Vol. 246. pp. 623–632. DOI: 10.31897/PMI.2020.6.4
3. Melnik V. V., Fedorova M. A., Murin K. M., Bukhanik A. I., Malova S. A. Underground geotechnology. Underground mining processes in main transport roadways, in mine shafts and on ground surface. Tula : TulGU, 2022. 68 p.
4. McPherson M. J. Subsurface Ventilation and Environmental Engineering. Springer Dordrecht. 1993. pp. 134–174.
5. He D., Wang X., Guo C., Li H., Zhang Y. Study on the influence of the cage lifting piston effect in main intake shafts on air flow in transportation lanes. Applied Sciences. 2023. Vol. 13. No. 3. DOI: 10.3390/app13031419
6. Tian F. Study on Operation Effect and Aerodynamic Characteristics of Wellbore Lifting Container. Hunan University of Science and Technology: Xiangtan, China, 2007.
7. Liu M., Zhu C., Zhang H., Zheng W., You S. et al. The environment and energy consumption of a subway tunnel by the influence of piston wind. Applied Energy. 2019. Vol. 246. pp. 11–23.
8. Oshchepkov T. S., Kiyanitsa L. A., Lugin I. V. Determining air velocity fields in subway tunnels using ring models as a method of topological decomposition. Interekspo Geo-Sibir. 2020. Vol. 2. pp. 129–137.
9. Cross D., Hughes B., Ingham D., Ma L. Enhancing the piston effect in underground railway tunnels. Tunnelling and Underground Space Technology. 2017. Vol. 61. pp. 71–81.
10. González M. L., Vega M. G., Oro J. M. F., Marigorta E. B. Numerical modeling of the piston effect in longitudinal ventilation systems for subway tunnels. Tunnelling and Underground Space Technology. 2014. Vol. 40. pp. 22–37
11. Stevenson A. Mine ventilation investigations : PhD thesis. Glasgow : Royal College of Science and Technology, 1956.
12. Ushakov K. Z., Burchakov A. S., Puchkov L. A., Medvedev I. I. Mine aerology. Moscow : Nedra, 1987. 421 p.
13. Mokhirev N. N., Radko V. V. Engineering designs of mine ventilation. Moscow : Nedra, 2007. 324 p.
14. Levin L. Yu. Theoretical and technological framework for resource-saving systems of air conditioning in mines : Dissertation of Candidate of Engineering Sciences. Perm : GI UrO RAN, 2010. 275 p.
15. Huang H., Sun T., Zhang G., Li D., Wei H. Evaluation of a developed SST k-ω turbulence model for the prediction of turbulent slot jet impingement heat transfer. International Journal of Heat and Mass Transfer. 2019. Vol. 139. P. 700–712.
16. Semin M. A., Maltsev S. V., Kolesov E. V. Study of the influence of aerodynamic processes in a mine shaft with cable reinforcement on vibrations of a moving skip. Nedropolzovanie. 2022. Vol. 22, No. 4. pp. 192–200. DOI: 10.15593/2712-8008/2022.4.7
17. Wu R., Zhu Z., Cao G. Computational Fluid Dynamics Modeling of Rope-Guided Conveyances in Two Typical Kinds of Shaft Layouts. PLoS One. 2015. Vol. 17. No. 2. pp. 978–987.
18. Duan Y., Zheng Q., Jiang B. Use of computational fluid dynamics to implement an aerodynamic inverse design method based on exact Riemann solution and moving wall boundary. Engineering Applications of Computational Fluid Mechanics. 2020. Vol. 14, No. 1. pp. 284–298.

Language of full-text русский
Полный текст статьи Получить
Назад