Название |
Features of ventilation and air conditioning design in deep mines |
Информация об авторе |
Mining Institute of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
A. V. Zaitsev, Head of laboratory, Doctor of Engineering Sciences, artem.v.zaitsev@yandex.ru L. Yu. Levin, Head of department, Doctor of Engineering Sciences, Corresponding Member of the Russian Academy of Sciences O. S. Parshakov, Researcher, Candidate of Engineering Sciences |
Реферат |
The experience of scientific supervision of deep mine design and operation indicates the need to take into account the unique features that affect the parameters of ventilation and air conditioning in underground roadways. Deep-level mining features high barometric pressure and high temperatures in enclosing rock mass surrounding underground openings. Both the atmospheric barometric pressure in roadways and the temperature of rocks significantly affect calculation of the required air amounts for underground work areas, modeling of air distribution in mine ventilation networks, as well as selecting mining equipment parameters and microclimatic conditions in roadways. Based on the comprehensive research of the physical processes in deep mines, it is concluded that it is possible to enhance ventilation efficiency and to normalize microclimate in mine work areas with regard to their characteristic features toward improved mining safety. For finding air conditioning parameters to provide mining safety, it is necessary to take into account air density in the roadways intended for installation of equipment, decrease in maximal humidity and increase in dew point in deeper level mining, etc. To this effect, the authors consider features of ventilation and air conditioning design in deep mines and, on this basis, offer recommendations toward safe and efficient deep-level mining. The study was supported by the Russian Science Foundation. Project No. 19-77-30008. |
Библиографический список |
1. Parshakov O. S., Utkin N. N., Davydov A. A. Scientific supervision of exploration heading in Skalisty Mine of NorNickel’s Polar Division under conditions of toxic and flammable gas emission. Gornoe ekho. 2022. No. 3(88). pp. 92–98. 2. Lugovskiy S. I. Ventilation in deep mines. Moscow : Gosgortekhizdat, 1962. 324 p. 3. Bobrov D. A., Litvinovskaya N. A., Nesterov E. A. Gas content and gas-dynamic characteristics of rocks of the IV-p horizon of the Starobin deposit of potash salts. IOP Conference Series: Earth and Environmental Science. 2022. Vol. 1021. DOI: 10.1088/1755-1315/1021/1/012056 4. Chen X., Li L., Wang L., Qi L. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China. Safety Science. 2019. Vol. 115, Iss. 16. pp. 229–236. 5. Nesterov K. V., Kuzenkov M. V. Expanding Kola MMC’S resource base. Tsvetnye Metally. 2019. No. 11. pp. 16–22. 6. Shcherban A. N., Kremnev O. A. Scientific framework for thermal regime design and control in deep mines. 2 volumes. Kiev : Izdatelstvo AN USSR, 1959–1960. 7. Velichko A. E., Kuzin V. A., Yakovenko A. K. Assessment of existing relations for air heat calculation in mine roadways. Air Conditioning in Deep Mines : Collected Papers. Makeevka : MakNII, 1978. Iss. 6. pp. 19–24. 8. Voropaev A. F. Theory of heat exchange between air and rocks in deep mines. Moscow : Nedra, 1966. 249 p. 9. Dyadkin Yu. D. High temperature control in deep mines. Moscow : Ugletekhizdat, 1957. 80 p. 10. Levin L. Yu., Zaitsev A. V., Butakov S. V., Semin M. A. Normalization of microclimate in deep potash mines. Gornyi Zhurnal. 2018. No. 8. pp. 97–102. 11. Ushakov K. Z., Burchakov A. S., Puchkov L. A., Medvedev I. I. Aerology in mines. 3rd revised and enlarged edition. Мoscow : Nedra, 1987. 421 p. 12. Available at: https://docs.cntd.ru/document/573156117 (accessed: 14.06.2023). 13. Kolesnichenko E. A., Kolesnichenko I. E., Lyubomishchenko E. I. Chemical framework for change in concentration limits and velocity of air-and-methane mixture inflammation and explosion in mine roadways. Gornaya promyshlennost. 2011. No. 3(97). pp. 24–28. 14. Zaitsev A. V., Kazakov B. P., Kashnikov A. V., Kormshchikov D. S., Kruglov Yu. V. et al. Computer program state registration certificate No. 2015610589. AeroSet Analysis Package. Unified Register of Russian Software Products and Databases. Registered on 14 Jan 2015. 15. VentsimTM Design. Howden, 2023. Available at: https://ventsim.com/ru/ventsimdesign/ (accessed: 05.07.2023).
16. Vuma software. Vuma, 2023. Available at: https:/ /www.vuma3d.com/about-us/ (accessed: 15.10.2023). 17. Shakimov A. V. Theoretical framework for prediction, prevention and control of ventilation accidents in mines : Dissertation of Doctor of Engineering Sciences. Perm, 2012. 296 p. 18. Maltsev S. V., Semin M. A., Kormshchikov D. S. A method to determine aerodynamic drag coefficient in copper–nickel mine shafts. Journal of Mining Science. 2020. Vol. 56, No. 6. pp. 1032–1039. 19. Semin M. A., Grishin E. L., Levin L. Yu., Automated ventilation control in mines. Challenges, state of the art, areas for improvement. Journal of Mining Institute. 2020. Vol. 246. pp. 623–632. 20. Zaitsev A.V., Borodavkin D. A., Polyakov I. V. Vlasova E. M. Normalization of the temperature regime under the conditions of the hea ting microclima te of mines. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2021. No. 4. pp. 145–158. 21. Tseitlin Yu. A. Air conditioning plants in mines. Moscow : Nedra, 1974. 166 p. 22. Shuvalov Yu. V., Kuzin V. A., Khudyakov A. N. Experience and improvement of thermal regime adjustment in mines in Germany. Moscow : Nedra, 1990. 51 p. 23. Olkhovskiy D. V., ZaitsevA. V., Semin M. A. Variation of cooling efficiency of air conditioning systems in working spaces of deep mines. Mining Informational and Analytical Bulletin. 2021. No. 12. pp. 110–119. 24. Eckert E. R. G., Drake R. M. Analysis of Heat and Mass Transfer. New York : Hemisphere Publishing, 1987. 806 p. 25. Mikheev M. A., Mikheeva I. М. Fundamentals of heat transfer. 2nd edition. Moscow : Energiya, 1977. 344 p. 26. Available at: https://docs.cntd.ru/document/573140267 (accessed: 15.06.2023). 27. Borodavkin D. A., Zaytsev A. V., Parshakov O. S., Khokhryakov D. S. Experimental study of working conditions of underground workers in the heating microclimate of a deep polymetallic mine. Bezopasnost truda v promyshlennosti. 2023. No. 2. pp. 69–75. 28. Availavle at: https://docs.cntd.ru/document/499072756 (accessed: 15.06.2023). |