Journals →  Gornyi Zhurnal →  2023 →  #11 →  Back

GEOECOLOGY
ArticleName Desilication of quartz–leucoxene concentrate of oil and titanium ore middlings
DOI 10.17580/gzh.2023.11.18
ArticleAuthor Smetannikov A. F., Onosov D. V., Korotchenkova O. V., Onosova E. F.
ArticleAuthorData

Mining Institute of the Ural Branch of the Russian Academy of Sciences, Perm, Russia

A. F. Smetannikov, Head of Technological Mineralogy Sector, Doctor of Geological and Mineralogical Sciences, smetannikov@bk.ru
D. V. Onosov, Leading Engineer
O. V. Korotchenkova, Senior Researcher, Candidate of Geological and Mineralogical Sciences
E. F. Onosova, Laboratory Technician

Abstract

The main feedstock of the titanium industry is titanium–magnetite ore. Such ore processing includes production of ilmenite concentrate which is then melted with coal to produce titanium slag which is a titanium tetrachloride stock. The more commercially and technologically beneficial feedstock is a rutile concentrate. Its source may be the ore from the Yarega oil–titanium deposit with the content of TiO2 up to 10 %. The authors propose a processing method for the quartz–leucoxene concentrate which is the middlings of such ore beneficiation. The method assumes desilication of the concentrate by means of high-temperature roasting with chloride agents. Roasting leads to recrystallization, regeneration of quartz–rutile aggregates and their size increase, as well as to removal of chemical impurities from rutile crystals. Beneficiation of the milled mixture allows producing pure rutile concentrate.

keywords Oil–titanium ore, quartz–leucoxene concentrate, high-temperature roasting, rutile, regeneration, quartz, chlorides
References

1. Smetannikov A. F., Korotchenkova O. V., Onosov D. V. Some mineralogical and technological features of the Yarega oil–titanium ore. Gornoe ekho. 2021. No. 1. pp. 33–39. DOI: 10/7242/echo.2021/1/6/
2. Perovskiy I. A. Efficiency of mechanical activation of leucoxene concentrate in its desilication using ammonium fluoride. Structure, Substance and History of the Timan–Northern Ural Lithosphere : The 21st Conference Proceedings. Syktyvkar : Geoprint, 2012. pp. 176–181.

4. Chistov L. B., Okhrimenko V. E., Vygovskiy E. V. Method of processing quartz-leucoxene concentrates. Patent RF, No. 2390572. Applied: 19.11.2008. Published: 27.05.2010, Bulletin No. 15.
5. Sadykhov G. B., Zelenova I. M., Bakanov V. K., Fedun M. P. Method of artificial rutile production from leucoxene concentrate. Patent RF, No. 2216517. Applied: 15.07.2002. Published: 20.11.2003.
6. Zanaveskin K. L., Maslennikov A. N., Dmitriev G. S., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 3. pp. 49–56.
7. Istomina E. I., Istomin P. V., Nadutkin A. V., Grass V. E. Desiliconization of leucoxene concentrate through the vacuum silicothermic reduction. Novye Ogneupory. 2020. No. 3. pp. 5–9.
8. Kuzin E. N., Mokrushin I. G., Kruchinina N. E. Thermal treatment of quartz-leucoxene concentrate. GIAB. 2023. No 2. pp. 30–42.
9. Zhang W., Zhu Z., Cheng C. Y. A literature review of titanium metallurgical processes. Hydrometallurgy. 2011. Vol. 108. pp. 177–188.
10. Wang H. B., Jiang K. X., Shi Y. F., Zhang B. S. New technology for production of synthetic rutile by pressure leaching and preparation of sponge titanium by molten salt electrolysis. Rare Metal Materials and Engineering. 2006. Vol. 35. p. 78.
11. Haverkamp R. G., Kruger D., Rajashekar R. The digestion of New Zealand ilmenite by hydrochloric acid. Hydrometallurgy. 2016. Vol. 163. pp. 198–203.
12. Wahyuningsih S., Pramono E., Firdiyono F. et al. Decomposition of ilmenite in hydrochloric acid to obtain high grade titanium dioxide. Asian Journal of Chemistry. 2013. Vol. 25. pp. 6791–6794.
13. Smetannikov A. F., Onosov D. V., Onosova E. F., Smetannikov Al. F. Desilication of quartz–leucoxene concentrate produced from oil–titanium ore. Patent RF, No. 2792985. Applied: 13.04.2022. Published: 08.03.2023, Bulletin No. 10.
14. Smetannikov A. F., Kosolapova A. I., Onosov D. V. et al. Concept of use of comprehensive fertilizers of long-term action on the basis of waste processing of potassium-magnesium ore as a new paradigm in improving soil fertility. Dokuchaev Soil Bulletin. 2019. Vol. 100. pp. 133–158. DOI: 10.19047/0136-1694-2019–100-133-158
15. Smetannikov A., Onosov D., Fomin D., et al. The influence of unconventional mineral fertilizers based on the processing of K-MG ores on yield and quality of seed potato, as well as soil fertility parameters. Agriculture and Forestry. 2020. Vol. 66. No. 4. pp. 29–43.

Language of full-text russian
Full content Buy
Back