Journals →  CIS Iron and Steel Review →  2023 →  #2 →  Back

Preparation of Raw Materials
ArticleName Comparative review on the technologies of briquetting, sintering, pelletizing and direct use of fines in processing of ore and technogenic materials
DOI 10.17580/cisisr.2023.02.01
ArticleAuthor Yu. E. Kapelyushin
ArticleAuthorData

South Ural State University (Chelyabinsk, Russia)

Yu. E. Kapelyushin, PhD, Head of the Scientific and Research Laboratory “Physical-Chemistry and Gas Dynamics Problems”, Senior Researcher of the Scientific and Research Laboratory “Hydrogen Technologies in Metallurgy”, e-mail: kapelyushinye@susu.ru

Abstract

A critical comparative analysis of technologies for preparation of ore and technogenic materials before metallurgical processing was conducted in this research. Briquetting, sintering, pelletizing and direct use of fines (processing without agglomeration) were conditionally emphasized among these technologies. The roller-press briquetting, vibropressing briquetting and stiff vacuum extrusion constitute the basis of the briquetting technology, advantages and disadvantages of these methods were analyzed that accompany briquetting. A few modern briquetting plants in CIS countries were commissioned. The main features were provided for agglomeration via pelletizing method. The sintering technology was reviewed, as well as data on new sintering plants in Russia. The technologies of direct processing of fines, which are conditionally divided into “fluidized bed” and direct processing of the fines in the melt, were briefly considered. The restrictions for processing in a “fluidized bed” were described as well as reduction characteristics of pellets and briquettes, which are often accompanied by swelling (variation of linear dimensions). The main causes of swelling of iron ore materials during reduction were described. The political and ecological factors of production and the problems of hydrogen power engineering were examined. The characteristics of total carbon dioxide emissions were provided for different production. It was shown that smelting of briquettes and pellets in arc furnaces, which are preliminary metalized by the gaseous reducing agents, are characterized by the lowest amount of emissions among the existing technologies. At the same time, the maximal carbon dioxide emissions are observed when using the alternative technologies, which utilize lump coal as a reducing agent.

The research was funded by the Russian Science Foundation grant No. 21-79-00081 of the Russian scientific fund, https://rscf.ru/project/21-79-00081/.

keywords Roller-press briquetting, vibropressing briquetting, stiff vacuum extrusion, pelletizing, sintering, direct reduction, swelling of materials, hydrogen, carbon dioxide emissions
References

1. Bizhanov A., Chizhikova V. Agglomeration in Metallurgy. Springer International Publishing. 2020. 454 p.
2. Yang, W.-C. Handbook of Fluidization and Fluid-Particle Systems. 2003. Vol. 1. 850 p.
3. Bizhanov A. Briquetting in Metallurgy. CRC Press. 2022. 326 p.
4. Holowaty M. O. History of Iron Ore Sintering Recalls Variety of Experimentation. JOM, The Journal of The Minerals, Metals & Materials Society (TMS). 1955. No. 7. pp. 19–23. DOI: 10.1007/BF03377448
5. de Moraes S. L., de Lima J. R. B., Ribeiro T. R. Iron ore pelletizing process: An Overview. Iron Ores and Iron Oxide Materials. 2018. 280 p. Ch. 3.
6. Mousa E., Ahmed H., Söderström D. Potential of Alternative Organic Binders in Briquetting and Enhancing Residue Recycling in the Steel Industry. Recycling. 2022. No. 7. pp. 21. DOI: 10.3390/recycling7020021
7. Ravich B. M. Briquetting in Ferrous and Nonferrous Metallurgy. Moscow. Metallurgy. 1975. 232 p.
8. Pavlov V. V. Inconsistencies in metallurgy. Their elimination. UGGU. 2013. 211 p.
9. Morris A. E. Iron Resources and Direct Iron Production. Encyclopedia of Materials: Science and Technology. 2001. pp. 4302–4310.
10. World DRI Statistics 2021. URL: https://www.midrex.com/wpcontent/uploads/MidrexSTATSBook2021.pdf
11. Seetharaman S., McLean A., Guthrie R., Sridhar S. Treatise on Process Metallurgy. Publisher Elsevier Ltd. 2013. Vol. 1. 952 p.
12. Kurunov I., Bizhanov A. Stiff Extrusion Briquetting in Metallurgy. Springer. 2018. 170 p.
13. Kumar D. S., Sah R., Sekhar V. R., Vishwanath S. C. Development and Use of Mill Scale Briquettes in BOF. Ironmaking & Steelmaking. 2017. Vol. 44. pp. 134–139. DOI: 10.1080/03019233.2016.1165499
14. Kola mining and metallurgical company continues reducing sulfur dioxide emissions. 31-07-2018. URL: https://www.nornickel.ru/news-and-media/press-releases-and-news/kolskaya-gmk-prodolzhaet-snizhat-vybrosy-dioksida-sery/ (access date: 05.08.2023).
15. Bizhanov A. M, Kurunov I. F. Extrusion briquettes (brexes) – the new stage in agglomeration of raw materials in the iron and steel industry. М. Metallurgizdat. 2017. 234 p.
16. Guzman I. Ya. Chemical technology of ceramics. Moscow. RIF “Stroimaterialy” JSC. 2003. 406 p.
17. BF No. 1: Continuation of technological researches. 28-07-2010. URL: http://www.kmz-tula.ru/articles-20100728.html (access date: 05.08.2023).
18. Naiker O., Riley T. Xstrata Alloys in Profile. Proceedings of the South African Pyrometallurgy. 2006. pp 297–305.
19. Davey K. P. The Development of an Agglomerate through the Use of FeMn Waste. Proceedings of the tenth international ferroalloy congress (INFACON X). 2004. Vol. 27. pp. 272–280.
20. The Russian briquetting line is put into practice at the metallurgical works in Leningrad region. 10-11-2019. URL: https://sdelanounas.ru/blogs/126816/ (access date: 05.08.2023).
21. Balashova L. The new briquetting line AKKERMANN METAL was put into operation at YuUGPK JSC. 25-07-2019. URL: https://www.ural56.ru/news/628602/ (access date: 05.08.2023).
22. Kurunov I. F., Bizhanov A. M. Brexes as the new stage in agglomeration of raw materials for blast furnaces. Metallurg. 2014. No. 3. pp. 49–53.
23. Bizhanov A. M. Substantiation of choosing the production technology and examination of metallurgical properties of briquettes in order to rise efficiency of their use in extraction processes of the iron and steel industry. Мoscow. MISiS. 2016. 152 p.
24. Bizhanov A. M., Steele R. B., Podgorodetskiy G. S., Kurunov I. F., Dashevskiy V. Y., Korovushkin V. V. Extruded Briquettes (Bricks) for Ferroalloy Production. Metallurgist. 2013. Vol. 56. pp. 925–932.
25. Chelyabinsk electrometallurgical plant mastered production of manganese brexes. 13-08-2018. URL: https://briket-brex.ru/news/chemk-osvoil-vypusk-vypusk-margantsevykh-breksov/ (access date: 05.08.2023).
26. Kazchrome started building of the USD 2.5 mln. shop for brexes production. 06-10-2016. URL: https://www.erg.kz/ru/news/585 (access date: 05.08.2023).
27. NLMK Group puts into practice new production facilities based on secondary resources. URL: https://lipetsk.nlmk.com/ru/media-center/press-releases/nlmk-group-launches-new-by-product-fuelled-facility/?from=en (access date: 05.08.2023).
28. Sigov A. A., Shurkhal V. A. Sintering process. Kiev. Tekhnika. 1969. 232 p.
29. Gubanov V. I., Tseitlin A. I. Reference book of a sintering plant worker. Chelyabinsk. Metallurgiya. 1987. 207 p.
30. Korotich V. I., Frolov Yu. A., Bezdezhskiy G. N. Sintering of raw materials. Ekaterinburg. UGTU-UPI. 2003. 400 p.
31. Zhilkin V. P., Doronin D. N. Sinter production. Technology, equipment, automation. Ekaterinburg. Uralskiy tsentr PR i reklamy. 2004. 292 p.
32. Marchenko N. V., Vershinina E. P., Gildebrandt E. M., Blednova B. P. Metallurgy of heavy non-ferrous metals. 2009. 394 p.
33. Chelyabinsk metallurgical plant delivered 150 mln. t of sinter. 28-02-2019. URL: https://mechel.ru/press/news/chmk-otgruzil-150-millionov-tonn-aglomerata/ (access date: 05.08.2023).
34. New MMK sintering plant: the most modern and green in Russia. 12-12-2019. URL: https://www.vnedra.ru/glavnaya-tema/novaya-aglofabrika-mmk-samaya-sovremennaya-i-zelenaya-vrossii-9299/#:~:text= (access date: 05.08.2023).
35. Yusfin Yu. S., Bazilevich T. N. Burning of iron ore pellets. Мoscow. Metallurgiya. 1973. 272 p.
36. Maerchak Sh. Manufacture of pellets. Мoscow. Metallurgiya. 1982. 232 p.
37. Zhuravlev F. M., Malysheva T. Ya. Pellets from concentrates of ferriferous quartzite. Moscow. Metallurgiya. 1991. 127 p.

38. Kokorin L. K., Leleko S. N. Production of oxidized pellets. Ekaterinburg. Uralskiy tsentr PR i reklamy. 2004. 280 p.
39. Bondarenko I. V., Tastanov E. A. Obtaining Multi-Component Pellets from Finely Dispersed Chromium Concentrates, Refined Ferrochrome Slags and Diatomite Raw Materials of Kazakhstan. Metallurgist. 2019. Vol. 62. pp. 1213–1218. DOI: 10.1007/s11015-019-00776-0
40. Oskol electrometallurgical plant produced 70th million ton of metalized pellets. 07-02-2019. URL: https://bel.ru/news/2019-02-07/oemk-proizvyol-70-millionnuyu-tonnu-metallizovannyhokatyshey-330276 (access date: 05.08.2023).
41. Ferreira F. B., Flores B. D., Osório E., Vilela A. C. F. Evaluation of Zinc Removal and Compressive Strength of Self-Reducing Pellets Composed of Electric Arc Furnace Dust. Rev. Esc. Minas. 2019. Vol. 72. pp. 71–77. DOI: 10.1590/0370-44672017720190
42. Hyun-Soo Kim, Minyoung Cho, Chang-Kuk Ko, Sunkwang Jeong and Sang-Ho Yi. Direct Use of Magnetite Concentrates in the Fluidized-Bed Reactors of FINEX®. Proceedings of the AISTech Conference. 2014. pp. 1-6.
43. Wolfinger T., Spreitzer D., Schenk J. Using Iron Ore Ultra-Fines for Hydrogen-Based Fluidized Bed Direct Reduction – A Mathematical Evaluation. Materials (Basel). 2022. Vol. 15. 3943. DOI: 10.3390/ma15113943
44. Burke P. D., Gul S. HIsmelt – the Alternative Ironmaking Technology. Proceedings of the International Conference on Smelting Reduction for Ironmaking. Jouhari A. K., Galgali R. K., Misra V. N. (Eds). 2002. pp. 61–71.
45. Li Y., Li H., Wang H., Qing S., Hu J., Hou Y., Li H., Li L. Smelting Potential of HIsmelt Technology for High-Phosphorus Iron Ore and Ilmenite. Proceedings of the International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. CDCIEM 2011 (IEEE). 2011. pp. 1283–1286.
46. Zhang S., Hu P., Rao J., Wang Z., Zong Y., Zhang J. Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals. MDPI. 2022. 12. 1019. DOI: 10.3390/met12061019
47. Goodman N. J. The HIsmelt Technology: From Australia to China... and Back Again? Proceedings of the Iron Ore Conference 2019. 2019. pp. 3–13.
48. Gupta R. C., Prakash B. Effect of Firing Condition and Ingredients on the Swelling Behaviour of Iron Ore Pellets. Iron and Steel Institute of Japan International. 1993. Vol. 3. pp. 446–453. DOI: 10.2355/isijinternational.33.446
49. Gupta S. K., Lu W. K. Effect of Additives on the Strength, Reducibility and Swelling of Low Silica Iron Ore Pellets. Canadian Metallurgical Quarterly. 1987. Vol. 26. pp. 329–339. DOI: 10.1179/cmq.1987.26.4.329
50. Gupta R. C., Prakash B. Swelling of Iron Ore Pellets by Statistical Design of Experiment. Iron and Steel Institute of Japan International. 1992. Vol. 32. pp. 1268–1275. DOI: 10.2355/isijinternational.32.1268
51. Wang H., Sohn H. Y. Effects of Reducing Gas on Swelling and Iron Whisker Formation during the Reduction of Iron Oxide Compact. Steel Research International. 2012. Vol. 83. pp. 903–909. DOI: 10.1002/srin.201200054
52. Nakiboglu F. Mechanism of Swelling of Iron Oxide Pellets. PhD Thesis. 1981. 198 p.
53. Sharma T., Gupta R. C., Prakash B. Effect of Gangue Content on the Swelling Behaviour of Iron Ore Pellets. Minerals Engineering. 1990. No. 3. pp. 509–516.
54. Chang M., De Jonghe L. C. Whisker Growth in Reduction of Oxides. Metallurgical and Materials Transactions B. 1984. Vol. 15. pp. 685–694. DOI: 10.1007/BF02657290
55. Abdel Halim K. S., Bahgat M., El-Kelesh H. A., Nasr M. I. Metallic Iron Whisker Formation and Growth during Iron Oxide Reduction: Basicity Effect. Ironmaking & Steelmaking. 2009. Vol. 36. pp. 631–640. DOI: 10.1179/174328109X463020
56. John D. H. S., Nakiboglu F., Hayes P. C. The Effect of Sulfur on the Gaseous Reduction of Solid Calciowustites. Metallurgical and Materials Transactions B. 1986. Vol. 17. pp. 383–393. DOI: 10.1007/BF02655086
57. Li G. H., Tang Z. K., Zhang Y. B., Cui Z. X., Jiang T. Reduction Swelling Behaviour of Haematite/Magnetite Agglomerates with Addition of MgO and CaO. Ironmaking & Steelmaking. 2010. Vol. 37. pp. 393–397. DOI: 10.1179/030192310X12690127076352
58. El-Geassy A. A., Nasr M. I., Hessien M. M. Effect of Reducing Gas on the Volume Change during Reduction of Iron Oxide Compacts. Iron and Steel Institute of Japan International. 1996. Vol. 36. pp. 640–649. DOI: 10.2355/isijinternational.36.640
59. St. John D. H., Matthew S. P., Hayes P. C. The Breakdown of Dense Iron Layers on Wustite in CO/CO2 and H2/H2O Systems. Metallurgical and Materials Transactions B. 1985. Vol. 16. p. 857. DOI: 10.1007/BF02667525
60. Hayes P. C., Grieveson P. Microstructural Changes on the Reduction of Hematite to Maanetite. Metallurgical and Materials Transactions B. 1981. Vol. 12. pp. 579–587. DOI: 10.1007/ BF02654330
61. Hayes P. C., Grieveson P. The Effects of Nucleation and Growth on the Reduction of Fe2O3 to Fe3O4. Metallurgical and Materials Transactions B. 1981. No. 12. pp. 319–326. DOI: 10.1007/BF02654465
62. Jallouli M., Ajersch F. Analytical Model for the Swelling of Sintered Iron Oxide Pellets during the Haematite-Magnetite Transformation. Journal of Materials Science. 1986. Vol. 21. pp. 3528–3538. DOI: 10.1007/BF02402999
63. Edstrom J. O. The Mechanism of Reduction of Iron Oxides. The Journal of the Iron and Steel Institute. 1953. Vol. 175. pp. 289.
64. Kapelyushin Y., Sasaki Y., Zhang J., Jeong S., Ostrovski O. Effects of Temperature and Gas Composition on Reduction and Swelling of Magnetite Concentrates. Metallurgical and Materials Transactions B. 2016. Vol. 47. pp. 2263–2278.
65. Quader M. A., Ahmed S., Ghazilla R. A. R., Ahmed S., Dahari M. A. Comprehensive Review on Energy Efficient CO2 Breakthrough Technologies for Sustainable Green Iron and Steel Manufacturing. Renewable and Sustainable Energy Reviews. 2015. Vol. 50. pp. 594–614. DOI: 10.1016/j.rser.2015.05.026
66. Ma Y., Souza Filho I. R., Bai Y., Schenk J., Patisson F., Beck A., van Bokhoven J. A., Willinger M. G., Li K., Xie D. et al. Hierarchical Nature of Hydrogen-Based Direct Reduction of Iron Oxides. Scripta Materialia. 2022. Vol. 213. 114571. DOI: 10.1016/j.scriptamat.2022.114571
67. Orth A., Anastasijevic N., Eichberger H. Low CO2 Emission Technologies for Iron and Steelmaking as Well as Titania Slag Production. Minerals Engineering. 2007. Vol. 20. pp. 854–861. DOI: 10.1016/j.mineng.2007.02.007
68. The first Russian green metallurgy project Ecolant obtained starting investment from domestic banks for Euro 33 mln. 30-06-2021. URL: https://omk.ru/press/news/32963/ (access date: 05.08.2023).
69. RF power engineering strategy until 2035. URL: https://minenergo.gov.ru/node/1026?ysclid=l9mmahyl3z906956639 (access date: 05.08.2023).
70. RF Government approved the plan with measures for development of hydrogen power engineering. URL: https://minenergo.gov.ru/node/19194?ysclid=l9mmch6gp0222207625 (access date: 05.08.2023).
71. Litvinenko V. S., Tsvetkov P. S., Dvoinikov M. V., Buslaev G. V. The barriers to realization of hydrogen initiatives within the context of sustainable development of global power engineering. Zapiski Gornogo instituta. 2020. Vol. 244. pp. 428–438.
72. Cavaliere P. Electrolysis of Iron Ores: Most Efficient Technologies for Greenhouse Emissions Abatement. In: Clean Ironmaking and Steelmaking Processes. Springer. 2019. pp. 555–576. DOI: 10.1007/978-3-030-21209-4_10

Full content Comparative review on the technologies of briquetting, sintering, pelletizing and direct use of fines in processing of ore and technogenic materials
Back