Journals →  CIS Iron and Steel Review →  2023 →  #2 →  Back

Casting and Material Science
ArticleName An approach to calculating the casting temperature of high-manganese austenite steel
DOI 10.17580/cisisr.2023.02.07
ArticleAuthor S. L. Arapov, S. V. Belyaev, A. A. Kosovich, E. G. Partyko
ArticleAuthorData

LLC Engineering Construction Maintenance (Russia, Achinsk)1 ; Siberian Federal University (Russia, Krasnoyarsk)2

S. L. Arapov, Chief Metallurgist1, Junior Researcher2, e-mail: arapovsl@yandex.ru

 

Siberian Federal University (Russia, Krasnoyarsk)
S. V. Belyaev, Dr. Eng., Prof., Head of Foundry Department, e-mail: 244812@mail.ru
A. A. Kosovich, Cand. Eng., Associate Prof., Senior Researcher, e-mail: akosovich@sfu-kras.ru
E. G. Partyko, Cand. Eng., Associate Prof., Junior Researcher, e-mail: elforion@mail.ru

Abstract

This study is devoted to influence of the temperature procedures of high-manganese austenite steel casting on formation of the internal structure and properties of castings. An example of a high-manganese austenite steel Fe-1.1C-16Mn-0.8Si-1.3Cr-Mo-Ni is considered, which differs from the generally accepted composition of Hadfield steel (110G13L) by an expanded Mn content and combined alloying with carbide-forming elements. The study applied an approach to choosing the optimal casting temperature, which is implemented using pre-computer modeling of the cast structure by the Cellular Automaton Finite Element method, followed by verification on physical samples. An analysis of the microstructure of the experimental samples obtained at the selected casting temperatures indicates the accuracy of conducted calculation: the discrepancy between grain sizes does not exceed 5 μm (4.4 %). Rational temperature contributes to formation of more fine microstructure and, accordingly, a high level of mechanical properties: pouring the alloy under study at 1390-1410 °C makes it possible to obtain an average grain size of 113-116 μm, minimal mass loss upon contact with the abrasive (1.74-1.81 %) and increased impact strength (28.5-28.3 kgf·m/cm2). Subsequent approximation of the calculated values and obtaining a regression equation using the Reduced Major Axis method allows in practice to predict reliably (with determination coefficient 0.826) the grain size of the casting at the selected casting temperature without using additional software.
The research was carried out within the State scientific order of the Siberian federal university, the project No. FSRZ-2020-0013.

keywords Hadfield steel, chemical composition, microstructure, austenite, impact strength, Cellular Automaton Finite Element; casting temperature
References

1. GOST 977-88. Steel castings. General specifications. Introduced: 01.01.1990.
2. Sinitskiy E. V., Nefedyev A. A., Akhmetova A. A., Ovchinnikova M. V., Khrenov I. B., Deryabin D. A. Review of the results of investigations aimed at improvement of properties of castings made from high manganese steel. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2016. No. 2. pp. 45-57.
3. Okechukwu C., Dahunsi O. A., Oke P. K., Oladele I. O., Dauda M. Prominence of Hadfield Steel in Mining and Minerals Industries: A Review. IJET. 2017. Vol. 3. No. 2. pp. 83-90. DOI: 10.19072/IJET.299068
4. Alimov V. I., Shtykhno A. P., Bairova I. I. Improving the production of steel parts 110G13L for crushing and grinding equipment. Resursosberegayushchie tekhnologii proizvodstva i obrabotki davleniem materialov v mashinostroenii. 2021. No. 3. pp. 50-60.
5. Ten E. B., Bazlova T. A., Likholobov E. Yu. Effect of ladle treatment on the structure and mechanical properties of steel 110G13L. Metallovedenie i termicheskaya obrabotka metallov. 2015. No. 3. pp. 26-28.
6. Chaikin A. V., Chaikin V. A., Lozov V. S., Kasimgazinov A. D., Karman Y. V., Bykov P. O. Comparative analysis of the quality indices of the 110G13L steel produced with various modifiers and deoxidizing agents. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova. 2018. Vol. 16. No. 1. pp. 19-25. DOI: 10.18503/1995-2732-2018-16-1-19-25
7. Arapov S. L., Belyaev S. V., Kosovich A. A., Partyko E. G., Stepanenko N. A., Yuriev P. O., Mansurov Y. N. Application of Mathematical Statistics to Improve Hadfield Steel Casting Impact Strength. Metallurgist. 2023. Vol. 66. No. 9-10. pp. 1083-1091. DOI: 10.1007/s11015-023-01421-7
8. Zhang F. C., Lu B., Wang T. S., Zheng C. L., Zhang M., Luo H. H., Liu H., Xu A. Y. Explosion hardening of Hadfield steel crossing. Materials Science and Technology. 2010. Vol. 26. No. 2. pp. 223-229. DOI: 10.1179/174328408X363263
9. Najafabadi V., Amini K., Alamdarlo M. Investigating the effect of titanium addition on the wear resistance of Hadfield steel. Metallurgical Research & Technology. 2014. Vol. 111. No. 6. pp. 375-382. DOI: 10.1051/metal/2014044
10. Zhbanova E. N., Saitgareev L. N., Skidin I. E., Bialik G. A. An electrophysical method for increasing the wear resistance of castings from steel 110G13L during crystallization. Vestnik Gomelskogo gosudarstvennogo tekhnicheskogo universiteta im. P. O. Sukhogo. 2017. No. 3. pp. 24-28.
11. Vdovin K., Pesin A., Feoktistov N., Gorlenko D. Surface Wear in Hadfield Steel Castings DOPED with Nitrided Vanadium. Metals. 2018. No. 8. pp. 845. DOI: 10.3390/met8100845
12. Abbasi M., Kheirandish S., Kharrazi Y., Hejazi J. On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels. Wear. 2010. Vol. 268. No. 1-2. pp. 202-207. DOI: 10.1016/j.wear.2009.07.010
13. Bolobov V. I., Batalov A. P., Bochkov V. S., Chupin S. A. Wear resistace of steel 110G13L in different abrasive media. Zapiski Gornogo instituta. 2014. Vol. 209. No. 17. pp. 17-22.
14. Kolokoltsev V. M., Vdovin K. N., Chernov V. P., Feoktistov N. A., Gorlenko D. A., Dubrovin V. K. Study of abrasive and impact and abrasive wear mechanisms of high manganese steel. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova. 2017. Vol. 15. No. 2. pp. 54-62. DOI: 10.18503/1995-2732-2017-15-2-54-62
15. Chen C., Lv B., Ma H., Sun D., Zhang F. Wear behavior and the corresponding work hardening characteristics of Hadfield steel. Tribology International. 2018. Vol. 121. pp. 389-399. DOI: 10.1016/j.triboint.2018.01.044
16. Dement T. V., Popova N. A., Kurzina I. A. The effect of varying the concentration of Mn on the phase composition and intragrain structure of the Fe-Mn-C alloy (1.2 wt.% C). Fundamentalnye problemy sovremennogo materialovedeniya. 2016. Vol. 13. No. 4. pp. 421-426.
17. Pyatykh A., Savilov A., Timofeev S. Investigation of Hadfield Steel Machinability in Milling Operations. KEM. 2022. Vol. 910. pp. 123-128. DOI: 10.4028/p-8p4ud2

18. Davydov N. G., Lyamzin V. A. Features of tapping and teeming of high-manganese steel of of 110G13L grade. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2016. No. 2. pp. 32-34.
19. Shulte Yu. A., Korneichuk A. I., Sherstyuk A. A., Speranskiy B. S. Influence of pouring temperature on mechanical properties and cold brittleness of high-manganese steel G13L. Metallurgicheskaya i gornorudnaya promyshlennost. 1971. No. 2. pp. 48-50.
20. Arapov S. L., Belyaev S. V., Kosovich A. A., Partyko E. G. Digital experiment as a method for improving the mechanical properties of Hadfield steel. Chernye Metally. 2022. No. 10. pp. 45-51.
21. Hou Y., Li S., Cheng G. Effect of Nb Addition on Dendrite Growth and Equiaxed Grain Ratio of Fe-20 Pct Cr High-Purity Ferritic Stainless Steel. Metall. Mater. Trans. A. 2018. Vol. 49. pp. 5445–5457. DOI: 10.1007/s11661-018-4838-2
22. Ridgeway C. D., Gu C., Ripplinger K., Detwiler D., Ji M., Soghrati S., Luo A. A. Prediction of location specific mechanical properties of aluminum casting using a new CA-FEA (cellular automaton-finite element analysis) approach. Materials & Design. 2020. Vol. 194. 108929. DOI: 10.1016/j.matdes.2020.108929
23. Yan X., Xu Q., Tian G., Liu Q., Hou J., Liu B. Multi-scale modeling of liquid-metal cooling directional solidification and solidification behavior of nickel-based superalloy casting. Journal of Materials Science & Technology. 2021. Vol. 67. pp. 36-49. DOI: 10.1016/j.jmst.2020.06.051
24. GOST R 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012.
25. GOST 4755–91. Ferromanganese. Specification and conditions of delivery. Introduced: 01.01.1997.
26. GOST 6008–90. Metallic manganese and nitrated manganese. Specifications. Introduced: 01.07.1991.
27. GOST 4759–91. Ferromolybdenum. Specification and conditions of delivery. Introduced: 01.01.1993.
28. GOST 4757–91. Ferrochromium. Specification and conditions of delivery. Introduced: 01.01.1993.
29. GOST 849–2018. Primary nickel. Specifications. Introduced: 01.06.2019.
30. GOST 1415–93. Ferrosilicium. Specification and conditions of delivery. Introduced: 01.01.1997.
31. GOST 295–98. Aluminium for deoxidation, manufacture of ferroalloys and aluminothermy. Introduced: 01.07.2001.
32. GOST 5639–82. Steels and alloys. Methods for detection and determination of grain size. Introduced: 01.01.1983.
33. GOST 9454–78. Metals. Method for testing the impact bending strength at low, room and high temperature. Introduced: 01.01.1979.

Full content An approach to calculating the casting temperature of high-manganese austenite steel
Back