Journals →  Chernye Metally →  2023 →  #12 →  Back

60th anniversary of the Dept. of Technology of Mechanical Engineering of Sevastopol State University
ArticleName Increasing the productivity of grinding cycles for cold rolling rolls by optimizing modes using the graphic-analytical method
DOI 10.17580/chm.2023.12.13
ArticleAuthor S. M. Bratan, Yu. K. Novoselov, A. O. Kharchenko, S. I. Roshchupkin
ArticleAuthorData

Sevastopol State University, Sevastopol, Russia

S. M. Bratan, Dr. Eng., Prof., Head of the Dept. of Mechanical Engineering Technology, e-mail: serg.bratan@gmail.com
Yu. K. Novoselov, Dr. Eng., Prof., Dept. of Mechanical Engineering Technology, e-mail: yknovoselov@mail.sevsu.ru
A. O. Kharchenko, Cand. Eng., Prof., Dept. of Mechanical Engineering Technology, e-mail: khao@list.ru
S. I. Roshchupkin, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering Technology, e-mail: st.roshchupkin@yandex.ru

Abstract

Currently, the operation of grinding rolls of rolling mills using fine-grained wheels is the most advanced finishing method. However, the variety of recommendations for grinding with such wheels in the absence of process optimization techniques when trying to intensify the process lead to a deterioration in the output quality indicators. To determine the optimal grinding modes with fine-grained wheels using the linear programming method, a process model in the form of a system of linear inequalities and a linear optimization function was compiled based on technical limitations and experimental dependencies. Using the graphanalytical method, the optimal modes for grinding rolls with wheels 1-750×75×305 63S MI4 SM2 8B were determined by changing two mode factors (wheel speed and load on the electric motor of the wheel drive) and three grinding mode factors (part speed, longitudinal and transverse feeds). The optimality of the modes has been confirmed experimentally. Thus, the grinding mode determined by the linear programming method is indeed optimal, since it ensures the production of the part of a given quality at a lower processing cost. 

keywords Grinding, operation, productivity indicator, least processing complexity, grinding mode
References

1. Malkin S., Guo C. Grinding technology: Theory and applications of machining with abrasives. New York : Industrial Press, 2008. 372 р.
2. Novoselov Yu. K. Dynamics of surface shaping during abrasive processing. Sevastopol : Izdatelstvo SevNTU, 2012. 304 p.
3. Zhen B. H., Komanduri R. On the mechanics of the grinding process. Part I. Stochastic nature of the grinding process. International Journal of Machine Tools & Manufacture. 2003. Vol. 43. pp. 1579–1593.
4. Godinoa L., Pomboa I., Sanchez J. A., Alvarez J. On the development and evolution of wear flats in microcrystalline sintered alumina grinding wheels. Journal of Manufacturing Processes. 2018. Vol. 32. pp. 494–505.
5. Bratan S., Novoselov Yu., Bogutsky B. Analysis of relation between grinding wheel wear and abrasive grains wear. Procedia Engineering. 2016. Vol. 150. pp. 809–814. DOI: sciencedirect.com/science/article/pii/S1877705816314254
6. Lee C. W. A control-oriented model for the cylindrical grinding process. Int. J. Adv. Manuf. Technol. 2009. Vol. 44. pp. 657–666. DOI: 10.1007/s00170-008-1894-6
7. Shen N., He Y., Li J., Fang M. An improved differential evolution (IDE) based on double populations for cylindrical grinding optimization. Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation. Hunan. China, 11–12 April. 2009. pp. 724–727.
8. Hung L. X., Ky L. H., Hong T. T. et al. Optimization of manufacturing time in internal grinding. Proceedings of the International Conference on Engineering Research and Applications, ICERA 2019. Thai Nguyen. Vietnam, 1–2 December. 2020. pp. 557–565.
9. Korchak S. N. Productivity of the grinding process of steel parts. Moscow : Mashinostroenie, 1974. 280 p.
10. Görög A. Simulation of superfinished surface formation. Adv. Sci. Technol. Res. J. 2021. Vol. 15. pp. 219–227. DOI: 10.12913/22998624/133064
11. Maksimov I. S., Rakhcheev V. G., Galansky S. A. Oscillating grinding of railway rails. Vestnik transporta Povolzhya. 2019. No. 2 (74). pp. 46–50.
12. Zhensheng Ya., Zhonghua Yu. Grinding wheel wear monitoring based on wavelet analysis and support vector machine. Int. J. Adv. Manuf. Technol. 2012. Vol. 62. pp. 107–121.
13. Shi Z., Malkin S. Wear of electroplated CBN grinding wheels. J. Manuf. Sci. Eng. 2005. Vol. 128, Iss. 1. pp. 110–118.
14. Lajmert P., Sikora V., Ostrowski D. A dynamic model of cylindrical plunge grinding process for chatter phenomena investigation. MATEC Web of Conferences. 2018. Vol. 148. 09004. DOI: 10.1051/matecconf/20181480900
15. Leonesio M., Parenti P., Cassinari A., Bianchi G. et al. A time-domain surface grinding model for dynamic simulation. Procedia CIRP. 2012. Vol. 4. pp. 166–171. DOI: 10.1016/j.procir.2012.10.030
16. Sidorov D., Sazonov S., Revenko D. Building a dynamic model of the internal cylindrical grinding process. Procedia Engineering. 2016. Vol. 150. pp. 400–405. DOI: 10.1016/j.proeng.2016.06.739
17. Zhang N., Kirpitchenko I., Liu D. K. Dynamic model of the grinding process. Journal of Sound and Vibration. 2005. Vol. 280. pp. 425–432. DOI: 10.1016/j.jsv.2003.12.006
18. Ahrens M., Damm J., Dagen M., Denkena B. et al. Estimation of dynamic grinding wheel wear in plunge grinding. Procedia CIRP. 2017. Vol. 58. pp. 422–427. DOI: 10.1016/j.procir.2017.03.247
19. Garitaonandia I., Fernandes M. H., Albizuri J. Dynamic model of a centerless grinding machine based on an updated FE model. International Journal of Machine Tools & Manufacture. 2008. Vol. 48. pp. 832–840. DOI: 10.1016/j.ijmachtools.2007.12.001
20. Tawakolia T., Reinecke H., Vesali A. An experimental study on the dynamic behavior of grinding wheels in high efficiency deep grinding. Procedia CIRP. 2012. Vol. 1. pp. 382–387. DOI: 10.1016/j.procir.2012.04.068
21. Jung J., Kim P., Kim H., Seok J. Dynamic modeling and simulation of a nonlinear, nonautonomous grinding system considering spatially periodic waviness on workpiece surface. Simulation Modelling Practice and Theory. 2015. Vol. 57. pp. 88–99. DOI: 10.1016/j.simpat.2015.06.005
22. Bratan S. M., Vladetskaya E. A., Kharchenko A. O. Dynamic models of cylindrical grinding processes. Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta. 2022. No. 3 (77). pp. 138–148. DOI: 10.34771/UZCEPU.2022.77.3.027
23. Bratan S. M., Roshchupkin S. I., Kharchenko A. O., Belousov S. V. Quality improvement of manufacturing rolling mill rolls. CIS Iron and Steel Review. 2021. Vol. 22. pp. 26–31.
24. Bratan S. M., Kharchenko A. O., Lysenko D. A. Ensuring the stability of surface treatment in external cylindrical grinding operations from the standpoint of system analysis. Fundamentalnye i prikladnye problemy tekhniki i tekhnologii. 2023. No. 1 (357). pp. 84–93. DOI: 10.33979/2073-7408-2023-357-1-84-93
25. Lysenko D. A., Bratan S. M., Kharchenko A. O. Increasing the stability of finishing grinding of shaft journals of the shaft-screw complex. Uchenye zapiski Krymskogo inzhenernopedagogicheskogo universiteta. 2023. No. 1 (79). pp. 232–239.
26. Bratan S. M., Chasovitina A. S. Modeling the influence of relative vibrations of the tool and workpiece on material removal during internal grinding. Naukoemkie tekhnologii v mashinostroenii. 2022. No. 9 (135). pp. 3–9. DOI: 10.30987/2223-4608-2022-9-3-9
27. Bratan S., Sagova Z., Sága M., Yakimovich B. et al. New calculation methodology of the operations number of cold rolling rolls fine grinding. Applied Sciences. 2023. Vol. 13. 3484. DOI: 10.3390/app13063484

Language of full-text russian
Full content Buy
Back