ArticleName |
Pyrometallurgical processing of quartz-leucoxene to produce
synthetic titanite |
ArticleAuthorData |
Mendeleev University of Chemical Technology (Moscow, Russia)
Kuzin E. N., Associate Professor, Candidate of Engineering Sciences, e.n.kuzin@muctr.ru Kruchinina N. E., Dean, Doctor of Engineering Sciences, Professor, kruchinina.n.e@muctr.ru
Perm State National Research University (Perm, Russia)
Mokrushin I. G., Associate Professor, Candidate of Сhemical Sciences |
References |
1. Remizova L. I. Directions of development of raw material base of titanium in the world. Razvedka i Okhrana Nedr. 2020. No. 6. pp. 64–74. 2. Wu X. Applications of titanium dioxide materials URL: https://www.intechopen.com/chapters/77676 (accessed: 16.05.2023). 3. Haider A. J., Jameel Z. N., Al-Hussaini I. H. M. Review on: titanium dioxide applications. Energy Procedia. 2019. Vol. 157. pp. 17–29. 4. Kolli R. P., Devaraj A. A review of metastable beta titanium alloys. Metals. 2018. Vol. 8, Iss. 7. DOI: 10.3390/met8070506 5. Aleksandrov A. V., Lednov S. V., Davydkina E. A. State of the affairs in the titanium industry and development prospects. Tekhnologiya Legkikh Splavov. 2021. No. 2. pp. 77–82. 6. Sadykhov G. B. Fundamental problems and prospects for the use of titanium raw materials in Russia. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2020. Vol. 63, No. 3–4. pp. 178–194. 7. On the state and use of mineral resources of the Russian Federation in 2020. State report. Moscow: Ministry of Natural Resources and Ecology of the Russian Federation, 2021. 572 p. 8. Zanaveskin K. L., Zanaveskina S. M., Maslennikov A. N., Politova E. D., Vlasenko V. I., Zanaveskin L. N. Activation of quartz-leucoxene concentrate for processing into titanium tetrachloride. Russian Journal of Applied Chemistry. 2016. Vol. 89. pp. 1733–1739. 9. Sadykhov G. B., Zablotskaya Yu. V., Anisonyan K. G., Kop’ev D. Yu., Olyunina T. V. Extraction of high-quality titanium raw materials from leucoxene concentrates of the Yarega deposit. Russian Metallurgy (Metally). 2018. No. 11. pp. 1015–1019. 10. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Dmitriev G. S., Zanaveskin L. N., Politova E. D., Vlasenko V. I. Leaching SiO2 and Al2O3 impurities from leucoxene from the Yaregskoe deposit by sodium hydroxide solution. Theoretical Foundations of Chemical Engineering. 2019. Vol. 53. pp. 669–679. 11. Perovskiy I. А., Burtsev I. N., Ponaryadov A. V., Smorokov A. A. Ammonium fluoride roasting and water leaching of leucoxene concentrates to produce a high grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia). Hydrometallurgy. 2022. Vol. 210. DOI: 10.1016/j.hydromet.2022.105858 12. Karelin V. A., Karelin A. I. Fluoride technology for processing rare metal concentrates. Tomsk: NTL, 2004. 221 p. 13. Anisonyan K. G., Sadykhov G. B., Olyunina T. V., Goncharenko T. V., Leon L. I. Magnetizing roasting of leucoxene concentrate. Russian Metallurgy (Metally). 2011. No. 7. pp. 656–659. 14. Anisonyan K. G., Kopyev D. Yu., Olyunina T. V., Sadykhov G. B. Beneficiation of oil-saturated leucoxene ore by physical methods with preliminary thermal oil removing. Non-ferrous Metals. 2019. No. 2. pp. 43–47. 15. Istomina E. I., Istomin P. V., Nadutkin A. V., Grass V. E. Desiliconization of leucoxene concentrate through the vacuum silicothermic reduction. Novye Ogneupory. 2020. No. 3. pp. 5–9. 16. Nikolaev A. A., Kirpichev D. E., Nikolaev A. V. Thermophysical parameters of the anode region of plasma arc under the reduction smelting of quartz-leucoxene concentrate in a metal-graphite reactor. Inorganic Materials: Applied Research. 2020. Vol. 11. pp. 563–567. 17. Pat. RU 2779624 Russian Federation. 18. Kuzin E. N., Kruchinina N. E., Fadeev A. B., Nosova T. I. Principles of pyro-hydrometallurgical processing of quartz-leucoxene concentrate with the formation of a pseudobrukite phase. Obogashchenie Rud. 2021. No. 3. pp. 33–38. 19. Kuzin E. N., Kruchinina N. E. Production of complex coagulants based on mineral concentrates and their use in water treatment. Obogashchenie Rud. 2019. No. 3. pp. 43–48. 20. Gerasimova L. G., Maslova M. V., Nikolaev A. I. Decontaminating effluent water containing non-ferrous heavy elements and radionuclides on titanium phosphate. Tsvetnye Metally. 2011. No. 10. pp. 59–64. 21. Zhang Z. X. Activity calculating model of CaO–SiO2–TiO2 molten slag. Solid State Phenomena. 2018. Vol. 279. pp. 92–96. 22. Nakada H., Nagata K. Crystallization of CaO–SiO2–TiO2 slag as a candidate for fluorine free mold flux. ISIJ International. 2006. Vol. 46, Iss. 3. pp. 441–449. 23. Goroshchenko Ya. G. Chemistry of titanium. Kiev: Naukova Dumka, 1970. 416 p. 24. Kuzin E. N. Application of the method of atomic emission spectroscopy with microwave (magnetic) plasma in the processes of identifying the chemical composition of steelmaking waste. Chernye Metally. 2022. No. 10. pp. 79–82. 25. Ismael M. H., Mohammed H. S., El Hussaini O. M., El-Shahat M. F. Kinetics study and reaction mechanism for titanium dissolution from rutile ores and concentrates using sulfuric acid solutions. Physicochemical Problems of Mineral Processing. 2022. Vol. 58, Iss. 1. pp. 138–148. 26. Wang W., Zeng D., Chen Q., Yin X. Experimental determination and modeling of gypsum and insoluble anhydrite solubility in the system CaSO4–H2SO4–H2O. Chemical Engineering Science. 2013. Vol. 101. pp. 120–129. 27. Shen L., Sippola H., Li X., Lindberg D., Taskinen P. Thermodynamic modeling of calcium sulfate hydrates in a CaSO4–H2SO4–H2O system from 273.15 to 473.15 K up to 5 m sulfuric acid. Journal of Chemical & Engineering Data. 2020. Vol. 65, Iss. 5. pp. 2310–2324. 28. Lazareva I. V., Gerasimova L. G., Okhrimenko R. F., Maslova M. V. Reaction of sphene with sulfuric acid solutions. Zhurnal Prikladnoy Khimii. 2006. Vol. 79, No. 1. pp. 18–21. 29. Gerasimova L. G., Maslova M. V., Lazareva I. V., Matveeva V. A. Use of sphene concentrate to obtain sorbents. Obogashchenie Rud. 2005. No. 4. pp. 31–34. 30. Maslova M. V., Gerasimova L. G., Okhrimenko R. F., Chugunov A. S. Study of the composition of ion exchange materials based on titanium phosphate. Zhurnal Prikladnoy Khimii. 2006. Vol. 79, No. 11. pp. 1813–1817. 31. Kuzin E., Averina Yu., Kurbatov A., Kruchinina N., Boldyrev V. Titanium-containing coagulants in wastewater treatment processes in the alcohol industry. Processes. 2022. Vol. 10, Iss. 3. DOI: 10.3390/pr10030440 |