Journals →  Obogashchenie Rud →  2023 →  #6 →  Back

EQUIPMENT
ArticleName Anti-corrosion protection of pipelines at mining and processing enterprises
DOI 10.17580/or.2023.06.09
ArticleAuthor Petrova T. A., Epishina A. D.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)

Petrova T. A., Associate Professor, Candidate of Engineering Sciences, Associate Professor, Petrova_TA@pers.spmi.ru
Epishina A. D., Postgraduate Student, s225013@stud.spmi.ru

Abstract

Corrosion of metal structures at mineral resource complex enterprises is a serious challenge that can result in major economic losses, safety hazards for people and property, as well as severe environmental damage in the case of emergencies with pollutant emissions into the environment caused by leaks in metal pipelines. This article provides specific examples from the operating experience of a number of mining and processing enterprises that are facing the problem of corrosion in equipment, slurry pipes, and other product pipelines. This confirms that the problem of preventing metal corrosion through anti-corrosion protection remains relevant and requires special attention. Currently existing anti-corrosion measures for protecting metal product pipelines have both advantages and disadvantages, expressed in cost, application limitations, environmental impact, and duration of protection. In general, the existing measures are either unable to provide the level of metal protection required for the application or have low efficiency and fail to prevent continuing deterioration of metal structures. This article analyzes the problem of corrosion of metal structures in the mining industry and the existing anti-corrosion protection methods for metals, describes their main advantages and disadvantages, and identifies the most effective anti-corrosion protection method for metal structures in terms of ensuring safe and long-term operation of mining facilities. A layer of non-corrosive non-ferrous metal coating has been found to be one of the most effective anti-corrosion protection solutions. Zinc is the most suitable option for this purpose, both from the point of view of protection efficiency and economic feasibility.

keywords Electrochemical corrosion, abrasive wear, mineral resource complex, slurry pipelines, anti-corrosion protection, oxide film, inhibitors
References

1. Vlasak P., Kysela B., Chara Z. Fully stratified particleladen flow in horizontal circular pipe. Particulate Science and Technology. 2014. Vol. 32, No. 2. pp. 179–182.
2. Alexandrov V. I., Kibirev V. I., Serzhan S. L. The effectiveness of polyurethane coatings on internal surfaces of slurry lines in tailings slurry hydrotransport systems. Obogashchenie Rud. 2020. No. 4. pp. 40–44. 
3. Sukhomlinov V. P. Wear-resistant composite pipes for mining enterprises. Gornaya Promyshlennost'. 2021. No. 3. pp. 58–59.
4. Bazhin V. Yu., Issa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. Zapiski Gornogo Instituta. 2021. Vol. 249. pp. 393–400.
5. Cherkasova E. V., Zolotuhina N. A., Goryunova I. P., Bulanova T. V., Chenskaya V. V. Operational reliability of corrosion protection of structures in industrialized region. Vestnik Kuzbasskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2017. No. 2. pp. 140–143.
6. Olt J., Krasny V. A., Maksarov V. V. Study of bearing units wear resistance of engines career dump trucks, working in fretting corrosion conditions. Zapiski Gornogo Instituta. 2019. Vol. 235. pp. 70–77.
7. Shelontsev V. A., Gorichev I. G., Kuzin A. V., Gerasimova I. V., Eliseeva E. A. Steel corrosion patterns in neutral and alkaline iron oxide slurry. Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. N. E. Baumana. Seriya: Estestvennye Nauki. 2021. No. 5. pp. 142–155.
8. Vlasov S. G., Nemchinova N. V., Zelinskaya E. V. Aggressive environment characteristics of affecting on the reliability of the mining equipment operation. Naukovedenie. Online Journal. 2017. Vol. 9, No. 1. 12 p.
9. Ponomarev A. I., Yusupov A. D. Effect of shear stress on the wall of technological pipelines at a gas condensate field on the intensity of carbon dioxide corrosion. Zapiski Gornogo Instituta. 2020. Vol. 244. pp. 439–447.

10. Shaposhnikov N. О., Golubev I. A., Khorobrov S. V., Kolotiy A. I., Ioffe A. V., Revyakin V. А. Autoclave modeling of corrosion processes occurring in a gas pipeline during transportation of an unprepared multiphase medium containing CO2. Zapiski Gornogo Instituta. 2022. Vol. 258. pp. 915–923.
11. Kharionovsky A. A., Gusev N. N. Improving the technical and technological efficiency of mine water treatment at coal enterprises by providing anti-corrosion protection of structures and equipment of treatment facilities. Gornyi Informatsionno-analiticheskiy Byulleten'. 2013. No. 7. pp. 211–214.
12. Shcherban' P. S. Design of the backfilling system of a new potash plant. Existing problems and ways of their salvation. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2022. No. 1. pp. 388–403.
13. Zaitsev A. V., Ageeva K. M. Drying of potassium mine workings using automatic air control systems. Nedropolzovanie. 2022. Vol. 22, No. 1. pp. 45–50.
14. Pashkevich M. A., Korotaeva A. E. Evaluation of the efficiency of the phytoextraction process in the quarry wastewater treatment. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 6–1. pp. 349–360.
15. Litvinova T. E., Suchkov D. V. Comprehensive approach to the utilisation of technogenic waste from the mineral resource complex. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 6–1. pp. 331–348.
16. Plokhov A. S., Pashkevich M. A. Study of drainage water treatment at a copper concentrator tailings storage facility. Obogashchenie Rud. 2022. No. 3. pp. 41–45.
17. Pashkevich M. A., Kharko P. A. The use of a composite mix to remove metals from acidic drainage waters at tailings facilities. Obogashchenie Rud. 2022. No. 4. pp. 40–47.
18. Goldobina L. A., Orlov P. S. Analysis of the corrosion destruction causes in underground pipelines and new solutions for increasing corrosion steel’s resistance. Zapiski Gornogo Instituta. 2016. Vol. 219. pp. 459–464.
19. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to grooving corrosion. Zapiski Gornogo Instituta. 2021. Vol. 252. pp. 854–860.
20. Chesnokovа M. G., Shalai V. V., Kraus Yu. A., Mironov A. Yu., Blinova E. G. Informative indices of the biocorrosion activity for the determination of the character of the aggression ground. Gigiyena i Sanitariya. 2016. Vol. 95, No. 6. pp. 513–517.
21. Dashko R. E., Romanov I. S. Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district). Zapiski Gornogo Instituta. 2021. Vol. 247. pp. 20–32.
22. Saltymakov M. S., Chekhlov A. N. Corrosion protection of casing and tubing. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2013. No. 4–1. pp. 86–89.
23. Kantyukov R. R., Zapevalov D. N., Vagapov R. K. Analysis of the application and impact of carbon dioxide media on the corrosion state of oil and gas facilities. Zapiski Gornogo Instituta. 2021. Vol. 250. pp. 578–586.
24. Erofeev V. T., Smirnov V. F., Lazarev A. V., Bogatov A. D., Kaznacheev S. V., Rodin A. I., Smirnova O. N., Smirnov I. V. Biological and climatic durability of polymeric composites. Academia. Arkhitektura i Stroitelstvo. 2017. No. 1. pp. 112–119.
25. Rakhimov R. Kh., Ermakov V. P., Rakhimov M. R., Rashidov Kh. K., Latipov R. N., Rashidov J. Kh. Safety of storage of sulfuric acid. Computational Nanotechnology. 2016. No. 3. pp. 183–195.
26. Sidikov S. S. Some features of organic inhibitors as corrosion protection. Dostizheniya Nauki i Obrazovaniya. 2019. No. 8–3. pp. 24–25.
27. Danyakin N. V., Sigida A. A. Methods and mechanisms for using corrosion inhibitors of metals and alloys. Auditorium. 2017. No. 2. pp. 132–140.
28. Kozlova L. S., Sibileva S. V., Chesnokov D. V., Kutyrev A. E. Corrosion inhibitors (review). Aviatsionnye Materialy i Tekhnologii. 2015. No. 2. pp. 67–75.
29. Pat. CN108102452A China.
30. Makarenko N. V., Kharchenko U. V., Slobodyuk A. B., Zemnukhova L. A. Phosphorus-containing products from rice production waste and their anticorrosive properties. Khimiya Rastitelnogo Syr'ya. 2013. No. 3. pp. 255–260.
31. Syrkov A. G., Pleskunov I. V., Ignatev S. A., Remzova E. V. Experience of development and implementation of nanostructured coatings for protection of metal structures at the enterprise of mining industry. Zapiski Gornogo Instituta. 2007. Vol. 173. pp. 237–239.
32. Pat. CN104480472A China.
33. Wang Ya., Fan Sh., Lang X. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China. Chinese Journal of Chemical Engineering. 2019. Vol. 27, No. 9. pp. 2118–2132.
34. Xu F., Luo L., Xiong L., Liu Y. Microstructure and corrosion behavior of ALD Al2O3 film on AZ31 magnesium alloy with different surface roughness. Journal of Magnesium and Alloys. 2020. Vol. 8, No. 2. pp. 480–492.
35. Zhong X., Liang R., Liu G., Pan W. Zinc coating on steel by atmosphere plasma spray and their anti-corrosion behavior. Materials Letters. 2022. Vol. 314. 5 p. DOI: 10.1016/j.matlet.2022.131825
36. Zhang T., Liu W., Sun Y., Dong B., Yang W., Chen L. Investigating the corrosion resistance of Cudoped Ni–Mo low alloy steel through electrochemical tests. Corrosion Communications. 2023. Vol. 9. DOI: 10.1016/j.corcom.2022.12.001

Language of full-text russian
Full content Buy
Back