Journals →  Tsvetnye Metally →  2023 →  #12 →  Back

COMPOSITES AND MULTIPURPOSE COATINGS
ArticleName Effect of mao ceramic coating on the stress-strain state of internal combustion engine pistons
DOI 10.17580/tsm.2023.12.05
ArticleAuthor Dudareva N. Yu., Kolomeychenko A. V., Deev V. B.
ArticleAuthorData

Ufa University of Science and Technology, Ufa, Russia

N. Yu. Dudareva, Professor at the Department of Internal Combustion Engines, Doctor of Technical Sciences, Associate Professor, e-mail: dudareva.nyu@ugatu.su

 

Central Scientific Research Automobile and Automotive Engines Institute NAMI, Moscow, Russia
A. V. Kolomeychenko, Head of the Advanced Technologies Department, Centre of Agricultural Engineering, Doctor of Technical Sciences, Professor, e-mail: a.kolomiychenko@nami.ru

 

Wuhan Textile University, Wuhan, China1 ; Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia; National University of Science and Technology MISiS, Moscow, Russia3
V. B. Deev, Professor at the Faculty of Mechanical Engineering and Automation1, Principal Researcher2, Professor at the Department of Metal Forming3, Doctor of Technical Sciences, Professor, (Corresponding Author), e-mail: deev.vb@mail.ru

Abstract

The authors of this paper used numerical modelling technique to look at the effect of ceramic coating formed on the surface of internal combustion engine piston crown on the level of stresses and strains in the piston material. The modelling was performed in SolidWorks Simulation. The following materials were used: for piston – hypereutectic aluminium piston alloy, for coating – ceramics. The properties of such ceramics were similar to the ones of micro-arc oxidation coatings. The surfaces of the model piston were subjected to mechanical and thermal loads corresponding to the ones experienced by the model engine. The effect of the coating thickness on the stress-strain state of the studied part was examined. The coating thickness was varied at 50 μm increments in the range of 50 to 300 μm. The modelling showed that the coating helped to significantly lower the level of stresses and strains in the most loaded points located in the centre of the piston crown. Thus, due to the coating the stress is decreased 8.6 times and the equivalent strain — 15.8 times. In the point located in the centre of the piston crown surface on the crankcase side, the stress is decreased 5.3 times and the strain — 6.1 times. Less distinguished changes were noted on the edge of the piston crown surface: due to the coating the stress there is 1.1 times lower and the strain — 1.6 times lower. This study helped understand that the coating thickness produces no considerable effect on the strains or stresses in the piston material. A 50 μm thick coating is sufficient to achieve the required effect.
This research was carried out as part of Governmental Assignment No. FEUE-2023-0007 (Ufa University of Science and Technology), with the funding provided by the Ministry of Science and Higher Education of the Russian Federation.

keywords Ceramic coating, piston, strength, 3D modelling, finite element method, stress, strain
References

1. Razuvaev A. V., Slobodina E. N. The operating conditions of the internal combustion engine with high temperature cooling. Journal of Physics Conference Series. 2020. Vol. 1441, No 1. 012026. DOI: 10.1088/1742-6596/1441/1/012026
2. Najafi M., Dastani H., Abedini M. et al. Stress analysis and fatigue life assessment of a piston in an upgraded engine. Journal of Failure Analysis and Prevention. 2019. No. 19. pp. 402–411. DOI: 10.1007/s11668-019-00583-4
3. Caldera M., Massone J. M., Martínez R. A. Failure analysis of a damaged direct injection diesel engine piston. Journal of Failure Analysis and Prevention. 2017. No. 17. pp. 979–988. DOI: 10.1007/s11668-017-0327-y
4. Deulgaonkar V. R., Ingolikar N., Borkar A., Ghute S. et al. Failure analysis of diesel engine piston in transport utility vehicles. Engineering Failure Analysis. 2021. Vol. 120. 105008. DOI: 10.1016/j.engfailanal.2020.105008
5. Tomasz A., Piotr L. Selected failures of internal combustion engine pistons. Logistyka. 2015. No. 3. pp. 48–55.
6. Pinninti R. R. Temperature and stress analysis of ceramic coated SiC – Al alloy piston used in a diesel engine using FEA. International Journal of Innovative Research in Science, Engineering and Technology. 2015. Vol. 4, No. 8. pp. 7562–7570. DOI: 10.15680/IJIRSET.2015.0408083
7. Enomoto Y., Yamamoto T. New materials in automotive tribology. Tribology Letters. 1998. No. 5. pp. 13–24. DOI: 10.1023/A:1019100531912
8. Pistons and engine testing. Wiesbaden. 2016. 295 p. DOI: 10.1007/978-3-658-09941-1
9. Atiyah A. A., Hafidh M. H., Ali A. H. Design and preparation of stepwise functionally graded materials used for internal combustion engine piston applications. Engineering and Technology Journal. 2016. Vol. 34, Part (A), No. 13. pp. 2387–2397. DOI: 10.30684/etj.34.13A.2

10. Kumar S., Kumar M. Tribological and mechanical performance of coatings on piston to avoid failure. Journal of Failure Analysis and Prevention. 2022. Vol. 22. pp. 1346–1369. DOI: 10.1007/s11668-022-01436-3
11. Roychoudhury A., Banerjee A., Mishra P. C., Khoshnaw F. An FEA material strength modelling of a coated engine piston. Materials Today: Proceedings. 2021. No. 44. pp. 1320–1325. DOI: 10.1016/j.matpr.2020.11.387
12. Ramasamy N., Kalam M. A., Varman M., Teoh Y. H. Comparative studies of piston crown coating with YSZ and Al2O3·SiO2 on engine out responses using conventional diesel and palm oil biodiesel. Coatings. 2021. Vol. 8, No. 11. p. 885. DOI: 10.3390/coatings11080885
13. Jalaludin H. A., Abdullah Sh., Ghazali M. J., Abdullah B., Abdullah N. R. Experimental study of ceramic coated piston crown for compressed natural gas direct injection engines. Procedia Engineering. 2013. No. 68. pp. 505–511. DOI: 10.1016/j.proeng.2013.12.213
14. Helmisyah A. J., Ghazali M. J., Abdullah S. Characterisation of thermal barrier coating on piston crown for compressed natural gas direct injection (CNGDI) engines. Applied Mechanics and Materials. 2012. No. 5. pp. 73–77. DOI: 10.4028/www.scientific.net/AMM.663.304
15. Dudareva N., Enikeev R. D., Ivanov V. Yu. Thermal protection of internal combustion engines pistons. Procedia Engineering. 2017. No. 206. pp. 1382–1387. DOI: 10.1016/j.proeng.2017.10.649
16. Yerokhin A. L., Snizhko L. O., Gurevina N. L., Leyland A. et al. Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy. Surface and Coatings Technology. 2004. No. 177–178. pp. 779–783. DOI: 10.1016/j.surfcoat.2003.06.020
17. Kolomeichenko A. V., Kravchenko I. N. Elemental composition and microhardness of the coatings prepared on faced aluminum alloys by plasma electrolytic oxidation in a silicate-alkaline electrolyte. Russian Metallurgy (Metally). 2019. No. 13. pp. 1410–1413. DOI: 10.1134/S0036029519130147
18. Dudareva N. Y., Kolomeichenko A. V., Deev V. B., Sitdikov V. M. Porosity of oxide ceramic coatings formed by micro-arc oxidation on high-silicon aluminum alloys. Journal of Surface Investigation. 2022. Vol. 16, Iss. 6. pp. 1308–1314. DOI: 10.1134/S1027451022060362
19. Curran J. A., Clyne T. W. The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium. Surface and Coating Technology. 2005. Vol. 199. pp. 177–183. DOI: 10.1016/j.surfcoat.2004.11.045
20. Malyshev V. N., Volkhin A. M., Gantimirov B. M. Tribological Characteristics Improvement of Wear Resistant MAO-Coatings. Journal of Coatings. 2013. No. 2. 262310. DOI: 10.1155/2013/262310
21. Sergeev S., Albieri M. S., Yatsenko V., Dubrovina N. Theoretical and practical study of possibility to decrease thermal stress in pistons of internal combustion diesel engine by using galvanic plasma modification. International Journal of Advanced Science and Technology. 2019. Vol. 28, No. 8. pp. 550–562. DOI: 10.13140/RG.2.2.32284.44162
22. Markov M. A., Bykova A. D., Krasikov A. V., Farmakovskii B. V., Gerashchenkov D. A. Formation of wear- and corrosion-resistant coatings by the microarc oxidation of aluminum. Refractories and Industrial Ceramics. 2018. Vol. 4, No. 59. pp. 207–214. DOI: 10.1007/s11148-018-0207-3
23. Liao Y., Zhou Q., Gao Ch. et al. In situ monitoring of initial plasma electrolytic oxidation process on 60 vol. % SiCp/2009 aluminum matrix composite by sound and vibration measurement techniques. The Review of Scientific Instruments. 2023. Vol. 6, No 94. pp. 6118–6124. DOI: 10.1063/5.0153515
24. Dudareva N. Y., Ivashin P. V., Gallyamova R. F., Tverdokhlebov A. Y., Krishtal M. M. Structure and Thermophysical Properties of Oxide Layer Formed by Microarc Oxidation on AK12D Al–Si Alloy. Metal Science and Heat Treatment. 2021. Vol. 62, No. 11-12. pp. 701–708. DOI: 10.1007/s11041-021-00625-5
25. An introduction to stress analysis applications with SolidWorks simulation : Student Guide. USA, 2010.
26. Nudehi S., Steffen J. R. Analysis of machine elements using SolidWorks simulation. USA : SDC Publications, 2016.
27. Kurowski P. M. Engineering analysis with SolidWorks simulation 2015. USA : SDC Publications, 2015.
28. Curran J. A., Kalkanci H., Magurova Yu. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications. Surface and Coatings Technology. 2007. Vol. 201. pp. 8683–8687. DOI: 10.1016/j.surfcoat.2006.06.050
29. Shackelford J. F., Doremus R. H. Ceramic and glass materials. Structure, properties and processing. USA : Springer Science+ Business Media, 2008. 201 p. DOI: 10.1007/978-0-387-73362-3
30. Dudareva N. Yu., Kruglov A. B., Gallyamova R. F. Structure and thermophysical properties of coatings formed by the method of microarc oxidation on an aluminum alloy AK4-1. Solid State Phenomena. 2018. Vol. 284. pp. 1235–1241. DOI: 10.4028/www.scientific.net/SSP.284.1235
31. Liu Y., Lei J., Niu X., Deng X., Wen J., Wen Z. Experimental and simulation study on aluminium alloy piston based on thermal barrier coating. Scientific Reports. 2022. No. 12. 10991. DOI: 10.1038/s41598-022-15031-x
32. Mollenhauer K., Tschoke H. Handbook of Diesel Engines. London, New York: Springer Heidelberg Dordrecht, 2010. DOI: 10.1007/978-3-540-89083-6
33. Heywood J. B. Internal combustion engine fundamentals. McGraw Hill. 1988. 1056 p.

Language of full-text russian
Full content Buy
Back