Journals →  Tsvetnye Metally →  2023 →  #12 →  Back

METAL PROCESSING
ArticleName Assessment of the stress-strain state of billets made of Ti – Ni alloys during three-roll screw rolling based on computer modeling
DOI 10.17580/tsm.2023.12.08
ArticleAuthor Andreev V. A., Karelin R. D., Komarov V. S., Skripalenko M. M.
ArticleAuthorData

Baikov Institute of Metallurgy and Materials Science, Moscow, Russia

V. A. Andreev, Leading Researcher, Candidate of Technical Sciences, e-mail: andreev.icmateks@gmail.com
R. D. Karelin, Researcher, Candidate of Technical Sciences, e-mail: rdkarelin@gmail.com
V. S. Komarov, Researcher, Candidate of Technical Sciences, e-mail: kom1107@yandex.ru

 

Baikov Institute of Metallurgy and Materials Science, Moscow, Russia; National University of Science and Technology “MISIS”, Moscow, Russia2
M. M. Skripalenko, Associate Professor of the Chair for Metal Forming2, Senior Researcher1, Candidate of Technical Sciences, e-mail: mms@misis.ru

Abstract

The results of computer simulation of the processes of rolling in a three-roll mill of titanium nickelide billets of equiatomic and nickel-transequiatomic compositions are presented. Computer modeling was performed using the QForm finite element analysis computing environment. Simulation of rolling processes was carried out in the deformation temperature range of 600–1000 °C using billets with an initial diameter of 40 mm, a wall thickness of 10 mm, a length of 250 mm, and a plug with a diameter of 20 mm. The diameter of the groove formed by the rollers in pitch point is 30 mm. Rolling was simulated at a roll feed angle of 20 degrees and rolling angle 7 degrees. The rotation speed of the rolls was set to 90 rpm. To assess the deformed state, the trajectories of movement of the billet`s points located in the cross section of the deformed billet at the radius were constructed, and the lengths of the resulting trajectories were estimated as a result of modeling various rolling modes. To assess the deformed state of the billet and the uniformity of the strain distribution, a study of the distribution of accumulated strain in the volume of the billets was carried out. The stress state and plasticity of the billets under various modes were assessed by studying the change in the values of the normalized average stress at selected points while they were in the deformation zone. It has been established that rolling at a temperature of 1000 °C, compared to rolling at a temperature of 600 °C, reduces the spread of accumulated strain values in the billet. A more uniform distribution of deformation over the cross section of the billet during rolling at a temperature of 1000 degrees C for the two alloys under study is determined by the smaller difference in the lengths of the largest and smallest trajectories of the points, which are located on the radius of the billet along the wall thickness. When rolling at a temperature of 1000 °C, the values of the normalized average stress decrease by up to 10% for equiatomic and up to 5% for transequiatomic alloys. To realize a more favorable stress-strain state and obtain a more regular microstructure of the billet under the conditions of the conducted research, it is advisable to carry out rolling of the indicated alloys at a temperature of 1000 °C.

The study was carried out within the framework of the Russian Science Foundation project No. 23-19-00729, https://rscf.ru/project/23-19-00729/.

keywords Titanium nickelide, Ti-Ni alloy, hollow billet, rolling, three-roll mill, computer modeling, normalized average stress, accumulated strain
References

1. Shape Memory Alloys: Fundamentals, Modeling and Applications. Ed. by: V. Brailovski, S. Prokoshkin, P. Terriault, F. Trochu. Montreal: (ETS Publ.), Universite du Quebec, Canada, 2003. 844 p.
2. Jani J. M., Leary M., Subic A., Gibson M. A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014. Vol. 56. pp. 1078–1113.
3. Resnina N., Rubanik V. et al. Shape memory alloys: Properties, technologies, opportunities. Praffikon : Trans. Tech. Publications, 2015. 640 p.
4. Sun Q., Matsui R., Takeda K., Pieczyska E. A. Advances in shape memory materials: In commemoration of the retirement of professor Hisaaki Tobushi. New York : Springer, 2017. Vol. 73. 241 p.
5. Machado G., Louche H., Alonso T., Favier D. Superelastic cellular NiTi tube-based materials: Fabrication, experiments and modeling. Materials & Design. 2015. Vol. 65. pp. 212–220.
6. Frotscher M., Schreiber F., Neelakantan L., Gries T. et al. Processing and characterization of braided NiTi microstents for medical applications. Materialwissenschaft und Werkstofftechnik. 2011. Vol. 42, Iss. 11. pp. 1002–1012.
7. Weinert K., Petzoldt V. Machining of NiTi based shape memory alloys. Materials Science and Engineering: A. 2004. Vol. 378, Iss. 1-2. pp. 180–184.
8. Yoshida K., Watanabe M., Ishikawa H. Drawing of Ni – Ti shape-memoryalloy fine tubes used in medical tests. Journal of Materials Processing Technology. 2001. Vol. 118, Iss. 1-3. pp. 251–255.
9. Jiang S. Y., Zhao Y. N., Zhang Y. Q., Ming T. A. N. G. et al. Equal channel angular extrusion of NiTi shape memory alloy tube. Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, Iss. 7. pp. 2021–2028.
10. Chen W., Wang H., Zhang L., Tang X. Development of hot drawing process for nitinol tube. International Journal of Modern Physics B. 2009. Vol. 23, Iss. 6. pp. 1968–1974.
11. Gorgul S. I., Medvedev M. I., Bespalova N. A., Sobko-Nesteruk O. E. et al. Manufacturing technology for titanium tubes from billets prepared by electron-beam remelting. Metallurgist. 2013. Vol. 57, Iss. 7. pp. 748–751.
12. Kaya E., Kaya I. A review on machining of NiTi shape memory alloys: The process and post process perspective. The International Journal of Advanced Manufacturing Technology. 2019. Vol. 100, Iss. 5. pp .2045–2087.
13. Safaei K., Nematollahi M., Bayati P., Dabbaghi H. et al. Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes. Engineering Structures. 2021. Vol. 226. 111383.
14. Tsaturyants M., Sheremetyev V., Dubinskiy S. et al. Structure and properties of Ti – 50.2Ni alloy processed by laser powder bed fusion and subjected to a combination of thermal cycling and heat treatments. Shap. Mem. Superelasticity. 2022. Vol. 8. pp. 16–32. DOI: 10.1007/s40830-022-00363-4
15. Bechle N. J., Kyriakides S. Evolution of localization in pseudoelastic NiTi tubes under biaxial stress states. International Journal of Plasticity. 2016. Vol. 82. 31 p.
16. Niccoli F., Giovinco V., Garion C., Maletta C. et al. NiTi shape memory alloy pipe couplers for ultra-high vacuum systems: development and implementation. Smart Materials and Structures. 2022. Vol. 31, Iss. 6. 065014.
17. Porenta L., Kabirifar P., Žerovnik A., Cebron M. et al. Thin-walled Ni – Ti tubes under compression: ideal candidates for efficient and fatigue-resistant elastocaloric cooling. Applied Materials Today. 2020. Vol. 20. 100712.
18. Jiang D., Bechle N. J., Landis C. M., Kyriakides S. Buckling and recovery of NiTi tubes under axial compression. International Journal of Solids and Structures. 2016. Vol. 80. pp. 52–63.
19. Jiang D., Kyriakides S., Bechle N. J., Landis C. M. Bending of pseudoelastic NiTi tubes. International Journal of Solids and Structures. 2017. Vol. 124. pp. 192–214.
20. Liang D., Wang Q., Chu K., Chen J. et al. Ultrahigh cycle fatigue of nanocrystalline NiTi tubes for elastocaloric cooling. Applied Materials Today. 2022. Vol. 26. 101377.
21. Valiev R. Z., Aleksandrov I. V. Bulk nanostructured metal materials: preparation, structure and properties. Moscow: Akademkniga, 2007. 398 p.
22. Sabirov I., Enikeev N. A., Murashkin M. Y., Valiev R. Z. Bulk nanostructured materials with multifunctional properties. Berlin : Springer International Publishing, 2015. 118 p.
23. Khmelevskaya I., Komarov V., Kawalla R., Prokoshkin S. et al. Effect of biaxial isothermal quasi-continuous deformation on structure and shape memory properties of Ti – Ni alloys. J. Mater. Eng. Perform. 2017. Vol. 26, Iss. 8. pp. 4011–4019.
24. Prokoshkin S., Khmelevskaya I., Andreev V., Karelin R. et al. Manufacturing of long-length rods of ultrafine-grained Ti-Ni shape memory alloys. Mater. Sci. Forum. 2018. Vol. 918. pp. 71–76.
25. Gunderov D., Churakova A., Lukyanov A., Prokofiev E. et al. Features of the mechanical behavior of ultrafine-grained and nanostructured TiNi alloys. Mater. Today: Proc. 2017. Vol. 4, Iss. 3. pp. 4825–4829.
26. Khmelevskaya I. Y., Trubitsyna I. B., Prokoshkin S. D., Dobatkin S. V. et al. Thermomechanical treatment of Ti-Ni-based shape memory alloys using severe plastic deformation. Materials Science Forum. 2003. Vol. 426. pp. 2765–2770.
27. Facchinello Y., Brailovski V., Prokoshkin S. D., Georges T. et al. Manufacturing of alloys by means of cold/warm rolling and annealing thermal treatment. Journal of Materials Processing Technology. 2012. Vol. 212, Iss. 11. pp. 2294–2304.
28. Demers V., Brailovski V., Prokoshkin S. D., Inaekyan K. E. Optimization of the cold rolling processing for continuous manufacturing of nanostructured Ti – Ni shape memory alloys. Journal of Materials Processing Technology. 2009. Vol. 209. pp. 3096–3105.
29. Prokoshkin S. D., Brailovski V., Inaekyan K. E., Demers V. et al. Structure and properties of severely cold-rolled and annealed Ti – Ni shape memory alloys. Materials Science and Engineering: A. 2008. Vol. 481. pp. 114–118.
30. Brailovski V., Prokoshkin S., Inaekyan K., Demers V. Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti – Ni alloys processed by cold rolling and post-deformation annealing. Journal of Alloys and Compounds. 2011. Vol. 509, Iss. 5. pp. 2066–2075.
31. Prokoshkin S., Dubinskiy S., Korotitskiy A., Konopatsky A. et al. Nanostructure features and stress-induced transformation mechanisms in extremely fine-grained titanium nickelide. Journal of Alloys and Compounds. 2019. Vol. 779. pp. 667–685.
32. Xuan T. D., Sheremetyev V. A., Komarov V. S. et al. Comparative study of superelastic Ti – Zr – Nb and commercial VT6 alloy billets by QForm simulation. Russ. J. Non-ferrous Metals. 2021. Vol. 62. pp. 39–47. DOI: 10.3103/S1067821221010168
33. Komarov V., Khmelevskaya I., Karelin R., Postnikov I. et al. Deformation behavior, structure and properties of an equiatomic Ti – Ni shape memory alloy compressed in a wide temperature range. Transactions of the Indian Institute of Metals. 2021. Vol. 74. pp. 2419–2426.
34. Komarov V., Khmelevskaya I., Karelin R., Kawalla R. et al. Deformation behavior, structure, and properties of an aging Ti-Ni shape memory alloy after compression deformation in a wide temperature range. JOM. 2021. Vol. 73. pp. 620–629.
35. Vlasov A. V., Stebunov S. A., Evsyukov S. A., Biba N. V. et al. Finite element modeling of technological processes of forging and die stamping. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 2019. 383 p.
36. Skripalenko M. M., Galkin S. P., Karpov B. V., Romantsev B. A. et al. Forming features and properties of titanium alloy billets after radial-shear rolling. Materials. 2019. Vol. 12. 3179.
37. Skripalenko M. M., Karpov B. V., Rogachev S. O., Kaputkina L. M. et al. Simulation of the kinematic condition of radial shear rolling and estimation of its influence on a titanium billet microstructure. Materials. 2022. Vol. 15. 7980.
38. Bai Y., Teng X., Wierzbicki T. On the application of stress triaxiality formula for plane strain fracture testing. Journal of Engineering Materials and Technology. 2009. Vol. 131, Iss. 2. 021002.
39. Bai Y., Wierzbicki T. A new model of metal plasticity and fracture with pressure and lode dependence. International Journal of Plasticity. 2008. Vol. 24, Iss. 6. pp. 1071–1096.
40. Bogatov A. A., Mizhiritsky O. I., Smirnov S. V. Plasticity resource of metals during forming. Moscow: Metallurgiya, 1984. 144 p.
41. Skripalenko M. M., Romantsev B. A., Galkin S. P., Kaputkina L. M. et al. Forming features at screw rolling of austenitic stainless-steel billets. Journal of Materials Engineering and Performance. 2020. Vol. 29. pp. 3889–3894.
42. Skripalenko M. M., Galkin S. P., Sung H. J., Romantsev B. A. et al. Prediction of potential fracturing during radial-shear rolling of continuously cast copper billets by means of computer simulation. Metallurgist. 2019. Vol. 62. pp. 849–856.
43. Skripalenko M. M., Romantsev B. A., Galkin S. P., Skripalenko M. N. Prediction of the fracture of metal in the process of screw rolling in a two-roll mill. Metallurgist. 2018. Vol. 61. pp. 925–933.
44. Skripalenko M. M., Romantsev B. A., Galkin S. P., Skripalenko M. N. et al. Comparative analysis of damage criteria for screw rolling using Computer Simulation. CIS Iron and Steel Review. 2020. Vol. 20. pp. 29–32.
45. Pater Z., Tomczak J., Bulzak T., Wójcik L. et al. Prediction of ductile fracture in skew rolling processes. International Journal of Machine Tools and Manufacture. 2021. Vol. 163. 103706.

Language of full-text russian
Full content Buy
Back