ArticleName |
Spatial distribution of blast-triggered seismic events: a case-study
of the Khibiny Massif |
ArticleAuthorData |
Kola Branch of the Geophysical Survey of the Russian Academy of Sciences, Apatity, Russia1 ; Kirovsk Branch of Apatit, Kirovsk, Russia2
Motorin A. Yu.1,2, Junior Researcher, Senior Geophysicist
Kirovsk Branch of Apatit, Kirovsk, Russia
Baranov S. V., Chief Researcher, Doctor of Physical and Mathematical Sciences, bars.vl@gmail.com
Kirovsk Branch of Apatit, Kirovsk, Russia1 ; Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia2
Shebalin P. N.1,2, Director, Doctor of Physical and Mathematical Sciences, Corresponding Member of RAS |
References |
1. Baranov S. V., Zhukova S. A., Korchak P. A., Shebalin P. N. Seismic productivity of blasts: A case-study of the Khibiny Massif. Eurasian Mining. 2020. No. 2. pp. 14–18. 2. Baranov S. V., Motorin A. Yu., Shebalin P. N. Spatial distribution of triggered earthquakes in the conditions of mining-induced seismicity. Izvestiya. Physics of the Solid Earth. 2021. Vol. 57, No. 4. pp. 520–528. 3. Felzer K. R., Brodsky E. E. Decay of aftershock density with distance indicates triggering by dynamic stress. Nature. 2006. Vol. 441, No. 7094. pp. 735–738. 4. Shebalin P. N., Narteau C., Baranov S. V. Earthquake productivity law. Geophysical Journal International. 2020. Vol. 222, Iss. 2. pp. 1264–1269. 5. Baranov S. V., Zhukova S. A., Korchak P. A., Shebalin P. N. Productivity of mining-induced seismicity. Izvestiya. Physics of the Solid Earth. 2020. Vol. 56, Iss. 3. pp. 326–336. 6. Nivin V. A. Occurrence forms, composition, distribution, origin and potential hazard of natural hydrogen-hydrocarbon gases in ore deposits of the Khibiny and Lovozero Massifs: A Review. Minerals. 2019. Vol. 9, Iss. 9. DOI: 10.3390/min9090535 7. Rebetsky Yu. L., Sim L. A., Kozyrev A. A. Possible mechanism of horizontal overpressure generation of the Khibiny, Lovozero, and Kovdor Ore Clusters on the Kola Peninsula. Geology of Ore Deposits. 2017. Vol. 59. pp. 265–280. 8. Shabarov A. N., Kuranov A. D. Kiselev V. A. Assessing the zones of tectonic fault influence on dynamic rock pressure manifestation at Khibiny deposits of apatite-nepheline ores. Eurasian Mining. 2021. No. 2. pp. 3–7. 9. Kremenetskaya E. O., Trjapitsin V. M. Induced seismicity in the Khibiny Massif (Kola Peninsula). Pure and Applied Geophysics. 1995. Vol. 145. pp. 29–37. 10. Adushkin V. V., Spivak A. A. Geomechanics of Large-Scale Blasts. Moscow : Nedra, 1993. 319 p. 11. Adushkin V. V. Blasting-induced seismicity in the European part of Russia. Izvestiya. Physics of the Solid Earth. 2013. Vol. 49. pp. 258–277. 12. Kocharyan G. G., Kulikov V. I., Pavlov D. V. Impact of massive blasts on stability of tectonic faults. Journal of Mining Science. 2019. Vol. 55, No. 6. pp. 905–913. 13. Kozyrev A. A., Semenova I. E., Zhuravleva O. G., Panteleev A. V. hypothesis of strong seismic event origin in Rasvumchorr mine on January 9, 2018. GIAB. 2018. No. 12. pp. 74–83. 14. Gospodinov D., Dineva S., Dahnér-Lindkvist C. On the applicability of the RETAS model for forecasting aftershock probability in underground mines (Kiirunavaara Mine, Sweden). Journal of Seismology. 2020. Vol. 26. pp. 1023–1037. 15. Woodward K., Wesseloo J. Observed spatial and temporal behaviour of seismic rock mass response to blasting. Journal of the Southern African Institute of Mining and Metallurgy. 2015. Vol. 115, Iss. 11. pp. 1045–1056. 16. Dokht R. M. H., Smith B., Kao H., Visser R., Hutchinson J. Reactivation of an intraplate fault by mine-blasting events: Implications to regional seismic hazard in Western Canada. Journal of Geophysical Research: Solid Earth. 2020. Vol. 125, Iss. 6. DOI: 10.1029/2020JB019 17. Korchak P. A.., Zhukova S. A., Menshikov P. Yu. Seismic monitoring build-up and development in the production activity zone of Apatit JSC. Gornyi Zhurnal. 2014. No. 10. pp. 42–46. 18. Rautian T. G. Earthquake Energy. Seismic Survey Methods. Moscow : AN SSSR, 1960. pp. 75–114. 19. Zaliapin I., Ben-Zion Y. Earthquake declustering using the nearest-neighbor approach in space-time-magnitude domain. Journal of Geophysical Research: Solid Earth. 2020. Vol. 125, Iss. 4. DOI: 10.1029/2018JB017120 20. Bayliss K., Naylor M., Main I. G. Probabilistic identification of earthquake clusters using rescaled nearest neighbor distance networks. Geophysical Journal International. 2019. Vol. 217, Iss. 1. pp. 487–503. 21. Wiemer S., Wyss M. Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bulletin of the Seismological Society of America. 2000. Vol. 90, Iss. 4. pp. 859–869. 22. Sinegubov V. Yu., Maksimov A. B., Streletskyi A. V. Ivanov Yu. S. Mining Safety under Conditions of Rockburst Hazard (Underground Mining at Apatite–Nepheline Deposits of Kirovsk Branch of Apatit: Kukisvumchorr, Yukspor, Apatite Circus, Rasvumchorr Plateau): Guidance. Kirovsk : Teleset, 2021. 96 p. 23. Kozyrev A. A., Panin V. I., Semenova I. E., Rybin V. V. Geomechanical support of mining operations in mines of the Murmansk Region. Gornyi Zhurnal. 2019. No. 6. pp. 45–50. 24. Smirnov V. B., Ponomarev A. V. Physics of Transient Seismic Modes. Moscow : RAS, 2020. 412 p. 25. Shcherbakov R., Zhuang J., Ogata Y. Constraining the magnitude of the largest event in a foreshock–main shock–aftershock sequence. Geophysical Journal International. 2018. Vol. 212, Iss. 1. pp. 1–13. 26. Molchan G. Space–time earthquake prediction: The error diagrams. Pure and Applied Geophysics. 2010. Vol. 167. DOI: 10.1007/s00024-010-0087-z 27. Zechar J. D., Jordan T. H. Testing alarm-based earthquake predictions. Geophysical Journal International. 2008. Vol. 172, Iss. 2. pp. 715–724. 28. Baranov S. V., Shebalin P. N. Forecasting aftershock activity: 2. Estimating the area prone to strong aftershocks. Izvestiya, Physics of the Solid Earth. 2017. Vol. 53. pp. 366–384. 29. Baranov S., Narteau C., Shebalin P. Modeling and prediction of aftershock activity. Surveys in Geophysics. 2022. Vol. 43. pp. 437–481. |