Journals →  Chernye Metally →  2024 →  #3 →  Back

Mineral Processing
ArticleName Production of concentrate for nonblast-furnace production of iron from titanium-magnetite ore
DOI 10.17580/chm.2024.03.01
ArticleAuthor A. E. Pelevin
ArticleAuthorData

Ural State Mining University, Ekaterinburg, Russia

A. E. Pelevin, Professor, Dr. Eng., Associate Professor, Dept. of Mineral Processing, e-mail: a-pelevin@yandex.ru

Abstract

The possibility of obtaining a superconcentrate for nonblast-furnace iron production using technology using a four-stage grinding scheme and fine screening in the second and third stages of grinding has been studied. Three four-stage schemes for grinding and beneficiation of titano-magnetite ore were tested in laboratory conditions, differing in the sizes of the screening sieves used in the second (0.4–0.63 mm) and third (0.1–0.315 mm) stages of grinding. The tested four-stage schemes with fine screening in the second and third stages made it possible to obtain super-concentrates (66.05–66.4% Fe), suitable for metallization and nonblast-furnace iron production. The mass fraction of titanomagnetite in the obtained concentrates was more than 95%. The maximum concentrate yield (16.02%) and iron recovery into the concentrate (67.61%) were achieved using a screening scheme with an increased size of the sieve openings (0.63 and 0.315 mm) in the second and third stages of grinding. The scheme using screens with large sieve openings in the second and third stages of grinding makes it possible to reduce the overgrinding of rock and ore minerals in the second and third stages and to prepare the middling product for subsequent production of superconcentrate from it using wet magnetic separation after the fourth stage of ball grinding. Features of the tested schemes are the removal of tailings in larger sizes in the second and third stages of grinding and the implementation of the main grinding and opening of minerals in the last stage of ball grinding.

keywords Nonblast-furnace iron production, superconcentrate, fine screening, grinding, sieve opening size, concentrate yield, iron extraction
References

1. Löf A., Ericsson M., Löf O. Iron ore market review. CIS Iron and Steel Review. 2019. Vol. 17. pp. 4–9.
2. Metolina P., de Andrade R. S., Ramos B., Guardani R. Hydrogen direct reduction ironmaking process for zero CO2 emission: A study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions. Minerals Engineering. 2023. Vol. 201. 108188. DOI: 10.1016/j.mineng.2023.108188
3. Ericsson M., Löf A., Löf O. Overview of the global iron ore market for 2019–2020. Gornaya promyshlennost. 2021. No. 1. pp. 74–82. DOI: 10.30686/1609-9192-2021-1-74-82
4. Ismagilov R. I., Baskaev P. M., Ignatova T. V., Shelepov E. V. The prospects for expanding the iron ore and raw material base through the processing oxidized ferruginous quartzite of the Mikhailovskoe deposit. Obogashchenie Rud. 2020. No. 3. pp. 19–24.
5. Silva K., Filippov L. O., Piçarra A., Flilippova I. V. et al. New perspectives in iron ore flotation: Use of collector reagents without depressants in reverse cationic flotation of quartz. Minerals Engineering. 2021. Vol. 170. 107004. DOI: 10.1016/j.mineng.2021.107004
6. Matiolo E., Couto H. J. B., Lima N., Silva K. et al. Improving recovery of iron using column flotation of iron ore slimes. Minerals Engineering. 2020. Vol. 158. 106608. DOI: 10.1016/j.mineng.2020.106608
7. Nemykin S. A., Kopanev S. N., Mezentseva E. V., Okunev S. M. Iron concentrate production with the increased content of useful component. Gornyi Zhurnal. 2017. No. 5. pp. 27–31.
8. Ismagilov R. I., Golenkov D. N., Sharkovsky D. O., Shelepov E. V. et al. Method for increasiing quality of magnetite concentrates. Patent RF, No. 2751185. Applied: 07.09.2020. Published: 12.07.2021. Bulletin No. 20.
9. Efendiev N. T., Ugarov A. A., Ismagilov R. I., Golenkov D. N. Method for producing high-quality magnetite concentrates. Patent RF, No. 2754695. Applied: 07.09.2020. Published: 06.09.2021. Bulletin No. 25.
10. Opalev A. S. Improving quality of magnetite concentrates based on magnetic-gravity separation. Gornyi Zhurnal. 2020. No. 9. pp. 72–77.
11. Pelevin A. E., Sytykh N. A. Iron concentrate stage separation by means of drum magnetic separator with modified separating bath. Obogashchenie Rud. 2016. No. 4. pp. 10–15.
12. Gzogyan S. R., Shcherbakov A. V. Improving the quality of concentrates of Stoilensky GOK JSC with the use of magnetic-gravity separation. Obogashchenie Rud. 2020. No. 6. pp. 3–7.
13. Rocha G. M., da Cruz M. V. M., Lima N. P., Lima R. M. F. Reverse cationic flotation of iron ore by amide-amine: bench studies. Journal of Materials Research and Technology. 2022. Vol. 18. pp. 223–230. DOI: 10.1016/j.jmrt.2022.02.039
14. Zhang X., Gu X., Han Y., Parra-Álvarez N. et al. Flotation of iron ores: A review. Mineral Processing and Extractive Metallurgy Review. 2019. Vol. 42. DOI: 10.1080/08827508.2019.1689494.
15. Grinenko V. I., Opalev A. S., Mayevsky P. V., Karpov I. V. Improvement of iron ore concentrate quality by gravity and magnetic separation at SSGPO JSC. Gornyi Zhurnal. 2021. No. 10. pp. 81–86.
16. Fominykh V. G., Kraeva Yu. P., Larina N. V. Petrology and ore genesis of the Kachkanar massif. Sverdlovsk : Izdatelstvo RISO UNTs AN SSSR, 1987. 180 p.
17. Kantemirov V. D., Titov R. S., Yakovlev A. M. Assessment of influence of titanomagnetite ore mineral composition on results of magnetic beneficiation. Obogashchenie Rud. 2017. No. 4. pp. 36–41.
18. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gornyi informatsionno-analiticheskiy byulleten. 2021. No. 11-1. pp. 293–305. DOI: 10.25018/0236_1493_2021_111_0_293
19. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Zapiski Gornogo instituta. 2022. Vol. 256. pp. 579–592. DOI: 10.31897/PMI.2022.61
20. Selivanov D. A., Bystrov I. G. Results of a comprehensive geological and economic assessment of the Kachkanar group of deposits. Razvedka i okhrana nedr. 2015. No. 3. pp. 46–52.
21. Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. Gornyi informatsionno-analiticheskiy byulleten. 2022. No. 5. pp. 154–166. DOI: 10.25018/0236_1493_2022_5_0_154
22. Pelevin A. E. Reduction of iron ore grinding stages through the use of fine screening in a closed cycle. Chernye Metally. 2022. No. 12. pp. 4–9.
23. Pelevin A. E. Improvement of concentrate quality by using fine screening in iron ore grinding stages. Chernye Metally. 2023. No. 10. pp. 4–9.
24. Rybkin V. S., Leontiev L. I., Leushin V. N., Evstyugin S. N. et al. Development of technological schemes for metallization of Kachkanar pellets. Stal. 2008. No. 7. pp. 16–20.
25. Rybkin V. S., Podkovyrkin E. G., Korshunova N. G., Bakov A. V. et al. Experimental study of metallization of iron ore pellets in a rotary kiln. Stal. 2008. No. 12. pp. 40–43.
26. Campos T. M., Bueno G., Barrios G. K. P., Tavares L. M. Pressing iron ore concentrate in a pilotscale HPGR. Part 1: Experimental results. Minerals Engineering. 2019. Vol. 140. 105875. DOI: 10.1016/j.mineng.2019.105875
27. Campos T. M., Bueno G., Barrios G. K. P., Tavares L. M. Pressing iron ore concentrate in a pilotscale HPGR. Part 2: Modeling and simulation. Minerals Engineering. 2019. Vol. 140. 105876. DOI: 10.1016/j.mineng.2019.105876
28. Campos T. M., Bueno G., Rodriguez V. A., Böttcher A. Ch. et al. Relationships between particle breakage characteristics and comminution response of fine iron ore concentrates. Minerals Engineering. 2021. Vol. 164. 106818. DOI: 10.1016/j.mineng.2021.106818
29. Malyarov P. V., Stepurin V. F., Soldatov G. M., Konnik N. D. Redistribution of grinding energy between stages under the conditions of the Urupsky MPP. Obogashchenie Rud. 2006. No. 3. pp. 18–20.
30. Malyarov P. V., Stepurin V. F., Soldatov G. M., Konnik N. D. On the issue of assessing the efficiency of the ore grinding process and energy consumption distribution between stages. Obogashchenie Rud. 2006. No. 2. pp. 3–6.
31. Osipova N. V. Investigation of the possibility of obtaining concentrate production targets based on a mathematical model of an ferrum ore processing site. CIS Iron and Steel Review. 2023. Vol. 25. pp. 4–9.
32. Pelevin A. E. Effects of magnetic flocculation on iron-bearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20.
33. Lomovtsev L. A., Nesterova N. A., Drobchenko L. A. Magnetic beneficiation of highly magnetic ores. Moscow : Nedra, 1979. 235 p.
34. Markauskas D., Kruggel-Emden H. Coupled DEM-SPH simulations of wet continuous screening. Advanced Powder Technology. 2019. Vol. 30, Iss. 12. pp. 2997–3009. DOI: 10.1016/j.apt.2019.09.007
35. Moraes M. N., Galery R., Mazzinghy D. B. A review of process models for wet fine classification with high frequency screens. Powder Technology. 2021. Vol. 394. pp. 525–532. DOI: 10.1016/j.powtec.2021.08.078

Language of full-text russian
Full content Buy
Back