Journals →  Chernye Metally →  2024 →  #3 →  Back

90th anniversary of Nosov Magnitogorsk State Technical University
ArticleName Modeling of thermal processes during wide hot strip rolling
DOI 10.17580/chm.2024.03.07
ArticleAuthor A. V. Koldin, D. V. Terentyev, R. R. Dema, O. R. Latypov
ArticleAuthorData

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia

A. V. Koldin, Cand. Eng., Associate Prof., Dept. of Physics, e-mail: koldin_av@mail.ru
D. V. Terentyev, Dr. Eng., Prof., Dept. of Machinery and Technologies of Forming and Engineering, e-mail: d.terentev@magtu.ru

 

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia1 ; Novotroitsk branch of NUST MISIS, Novotroitsk, Russia2
R. R. Dema, Dr. Eng., Associate Prof., Dept. of Machinery and Technologies of Forming and Engineering1, Prof., Dept. of Metallurgical Technologies and Equipment2, e-mail: demarr78@mail.ru
O. R. Latypov, Senior Lecturer, Dept. of Machinery and Technologies of Forming and Engineering1, Associate Prof., Dept. of Metallurgical Technologies and Equipment2, e-mail: latolegraf@list.ru

Abstract

Hot rolling mills are experiencing “forced” operating modes while simultaneously tightening the requirements for the quality of rolled products in the sheet rolling industry at the moment. The following trends are observed in rolling production: the productivity of mills is increasing due to the reduction of pauses between strip passes, and the thickness of the rolled strip is decreasing. In this regard, it is necessary to resolve issues of determining, monitoring and regulating the thermal state of work rolls and strips. The Nosov Magnitogorsk State Technical University is conducting work on modeling thermal processes during hot rolling to study and solve the assigned problems. The paper presents the developed mathematical models of the thermal state of the strip during rolling and laminar cooling on the outlet roller table and work rolls in the finishing group of mill stands in the form of computer programs. Programs for calculating the thermal state of the strip make it possible to predict the temperature distribution in the strip during hot rolling in the finishing group of the mill and during laminar cooling after rolling, as well as provide recommendations on cooling modes (included sections of the laminar cooling system). Programs for calculating the thermal state of the work rolls of the finishing group of broadband mills make it possible to predict the average temperature of the work rolls, as well as to issue recommendations on the assignment of the flow rate of the supplied coolant in the roll cooling system to the rolling stand. Based on the developed software products, it is possible to develop and implement new technological and technical solutions aimed at increasing the durability of work rolls and the quality of strips produced in hot rolling mills.

The research was supported by a grant from the Russian Science Foundation No. 23-29-00808, https://rscf.ru/project/23-29-00808.

keywords Mathematical modeling, work roll, laminar cooling, wide strip hot rolling mill
References

1. Sekimoto Y., Fanaka M., Sawada R. et al. Effect of rolling condition on surface temperature of work roll in hot strip mill. Transaction of the ISSJ. 1986. Vol. 16. No. 11. pp. 240–245.
2. Platov S. I., Dema R. R., Lukyanov S. I. Development and implementation of cooling technology for rolling rolls in order to improve their performance characteristics on the MMK`s 2000 wide-strip mill. Vestnik MGTU imeni G. I. Nosova. 2012. Vol. 38 (2). pp. 100, 101.
3. Sosedkova M. A., Grigorenko A. S., Radionova L. V. Mathematical model for calculating metal temperature in a hot sheet rolling mill. Vestnik MGTU imeni G. I. Nosova. 2020. Vol. 18 (4). pp. 24–31.
4. Prikhodko I. Yu., Vorobey S. A., Shatokhin S. E. Modeling of efficient cooling processes for sheet rolling mill rolls. Stal. 2005. No. 1. pp. 72–77.
5. Astakhov A. A., Mazur I. P. Development of a model for studying the thermal state of work rolls of hot rolling mills. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta. 2011. Vol. 7 (11-2). pp. 83–86.
6. Prikhodko I. Yu., Chernov P. P., Shatokhin S. E. Control of the thermal profile of rolls and flatness of strips by selective emulsion feeding. Stal. 2006. No. 11. pp. 87–93.
7. Oreshina M., Pimenov V., Dabas M. Software for modeling the temperature distribution of strip and work rolls during hot rolling. 1st International Conference on Control Systems, Mathematical Modelling, Automation and Energy Efficiency (SUMMA). 2019. 19245846.
8. Corral R. L., Colás R., Pérez A. Modeling the thermal and thermoelastic responses of work rolls used for hot rolling steel strip. Journal of Materials Processing Technology. 2004. Vol. 153-154. pp. 886–893. DOI: 10.1016/j.jmatprotec.2004.04.090
9. Biswas S. K., Chen S. J., Satyanarayana A. Optimal temperature tracking for accelerated cooling processes in hot rolling of steel. Dynamics and Control. 1997. Vol. 7. pp. 327–340. DOI: 10.1023/A:1008268310234
10. Saboonchi A., Abbaspour M. Changing the geometry of water spray on milling work roll and its effect on work roll temperature. Materials Processing Technology. 2004. Vol. 148, Iss. 1. pp. 35–49.
11. Abbaspour M., Saboonchi A. Work roll thermal expansion control in hot strip mill. Applied Mathematical Modelling. 2008. Vol. 32, Iss. 12. pp. 2652–2669.
12. Mansouri N., Mirhosseini M., Saboonchi A. Thermal modeling of strip across the transfer table in the hot rolling process. Applied Thermal Engineering. 2012. Vol. 38. pp. 91–104. DOI: 10.1016/j.applthermaleng.2011.
13. Hu Kejun, Zhu Fuxian, Chen Jufan, Noda Nao-Aki et al. Simulation of thermal stress and fatigue life prediction of high speed steel work roll during hot rolling considering the initial residual stress. Metals. 2019. Vol. 9, Iss. 9. 966. DOI: 10.3390/met9090966
14. Kumar A., Rath S., Kumar M. Simulation of plate rolling process using finite element method. Materials Today: Proceedings. 2021. Vol. 42. Part 2. pp. 650–659. DOI: 10.1016/j.matpr.2020.11.050
15. Zhou S. X. An integrated model for hot rolling of steel strips. Journal of Materials Processing Technology. 2003. Vol. 134, Iss. 3. pp. 338–351. DOI: 10.1016/s0924-0136(02)01118-4
16. Li Lianjie, Xie Haibo, Liu Tianwu, Huo Mingshuai et al. Influence mechanism of rolling force on strip shape during tandem hot rolling using a novel 3D multi-stand coupled thermomechanical FE model. Journal of Manufacturing Processes. 2022. Vol. 81. pp. 505–521.
17. Mei R., Li C., Liu X., Han B. Analysis of strip temperature in hot rolling process by finite element method. Journal of Iron and Steel Research, International. 2010. Vol. 17, Iss. 2. pp. 17–21. DOI: 10.1016/s1006-706x(10)60052-0
18. Platov S. I., Maslennikov K. B., Urtsev N. V., Dema R. R., Zvyagina E. U. Model of layer-by-layer cooling trajectory in rolled products by TMCP. Materials Science Forum. 2021. Vol. 1037. pp. 390–399. DOI: 10.4028/www.scientific.net/MSF.1037.390
19. Mukhin Yu. A., Belsky S. M., Makarov E. V., Stoyakin A. O. Mathematical model of formation of the thermal and phase state of steel strips on the outlet roller table during thin-sheet hot rolling. Innovative technologies in metallurgy and mechanical engineering. Yekaterinburg : Izdatelstvo Uralskogo universiteta, 2014. pp. 252–256.
20. Dema R. R., Platov S. I., Latypov O. R., Levantsevich M. A. Mathematical modeling of thermal deformation processes during hot rolling. Physico-chemical foundations of metallurgical processes (FKhOMP 2022). 2022. pp. 477–481.
21. Andreyuk L. V., Tyulenev G. G., Pritsker B. S. Analytical dependence of the deformation resistance of steels and alloys on their chemical composition. Stal. 1972. No. 6. pp. 522–523.
22. Minkin D. A., Korablev V. A., Sharkov A. V. Experimental study of the emissivity factor of the metal sample surface. Vestnik Sankt-Peterburgskogo universiteta. 2016. No. 5. pp. 18–23.
23. Miyasaka Y., Inada S. The effect of pure forced convection on the boiling heat transfer between a two-dimensional subcooled water jet and a heated surface. Journal of Chemical Engineering of Japan. 1980. Vol. 13. No. 1. pp. 22–28.
24. Ochi T., Nakanishi S., Kaji M., Ishigai S. Cooling of a hot plate with an impinging circular water jet. Multi-phase flow and heat transfer III. Part A. 1984. pp. 671–681.
25. Zumbrunen D. A., Incropera F. P., Viskanta R. A laminar boundary layer model of heat transfer due to a nonuniform planar jet impinging on a moving plate. Warme-und Stoffubertragung. 1992. Vol. 27. pp. 311–319.
26. Koldin A. V., Dema R. R., Nalimova M. V., Mihailov E. et al. Modeling of the thermal state of the hot rolled strip in the accelerated cooling process. Part I: heat transfer model. Journal of Chemical Technology and Metallurgy. 2019. Vol. 54. No. 6. pp. 1330–1336.
27. Koldin A. V., Dema R. R., Nalimova M. V., Shapovalov A. N., Mihailov E. Modeling of the thermal state of a hot rolled strip in an accelerated cooling process. Part 2: A calculation of the thermal field of the strip. results and conclusions. Journal of Chemical Technology and Metallurgy. 2020. Vol. 55. No. 1. pp. 171–181.
28. Geyn S. V., Zaytsev N. A., Posvyansky V. S., Radvogin Yu. B. Method of independent flows for numerical solution of the multidimensional heat equation. Preprint Rossiyskoy akademii nauk. Intstitut prikladnoy matematiki imeni M. V. Keldysha. 2023. No. 53. рр. 1–21.

Language of full-text russian
Full content Buy
Back