Journals →  Chernye Metally →  2024 →  #3 →  Back

90th anniversary of Nosov Magnitogorsk State Technical University
ArticleName Structure formation and formation of mechanical and technological properties of reinforcing bars during in-line heat treatment
DOI 10.17580/chm.2024.03.08
ArticleAuthor A. B. Sychkov, O. N. Tulupov, A. N. Zavalishchin, N. A. Baranov
ArticleAuthorData

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia

A. B. Sychkov, Dr. Eng., Prof., Dept. of Foundry Processes and Materials Science, e-mail: absychkov@mail.ru
O. N. Tulupov, Dr. Eng., Prof., Dept. of Materials Processing Technologies, e-mail: o.tulupov@mail.ru
A. N. Zavalishchin, Dr. Eng., Prof., Dept. of Foundry Processes and Materials Science, e-mail: zaval1313@mail.ru
N. A. Baranov, Postgraduate Student, Dept. of Materials Processing Technologies, e-mail: nikita_ram96@mail.ru

Abstract

A review of modern technologies for carrying out heat treatment (HT) of reinforcing bars in the flow of modern long-section continuous hot rolling mills using the heat of pre-rolling heating according to interrupted or intermittent (thermal cycling technology) quenching with self-tempering schemes is given. In this case, the microstructure of the metal varies over a wide range – from pearlite of various dispersion to tempered martensite. The main technological factors determining the achievement of a given level of structure and properties are the self-tempering temperature and the cooling rate of rolled products. The conditions for obtaining such technological properties of reinforcement as weldability, seismic, cold and hydrogen resistance, as well as corrosion resistance, fatigue endurance using in-line HT modes. Weldability is ensured by the chemical composition of steel, compliance with the technology of metal preparation, welding process, and post-processing of the seam and heat-affected zone. Seismic resistance of reinforcement is achieved by the ratio of temporary tensile strength to yield strength – at least 1.25, this ratio is achieved either by microalloying steel with elements such as vanadium, or by selecting thermal cycling modes of the metal. Corrosion resistance is formed by selecting the chemical composition of steel and special thermal cycling modes. The elimination or minimization of reversible hydrogen embrittlement is ensured by the technology of steel smelting and casting, which limits the saturation of steel with hydrogen, and by aging the reinforcement after HT for diffusion release of hydrogen into the environment. Fatigue endurance is increased by limiting the reinforcement strength and using a profile that minimizes mechanical stress concentrators. Cold resistance is formed by thermal cycling modes by obtaining a quasi-composite, multilayer structure. The specified technologies and equipment have been successfully implemented at metallurgical enterprises of the Russian Federation and neighboring countries (Magnitogorsk Iron and Steel Works, Moldavian and Belarusian Metallurgical Plants, etc.).

keywords Rolled reinforcing bars, in-line heat treatment, interrupted (intermittent thermal cycling) hardening with self-tempering, microstructure, mechanical properties, quality of reinforcement, technological equipment, uniformity of structure and properties, heat of rolling heating, digital twins
References

1. Uzlov I. G. Processes of production of high-strength rolled metal and its effective use in the national economy. Ferrous metallurgy. Science. Technology. Production: collection of scientific works. Moscow : Metallurgiya, 1989. pp. 279–287.
2. Uzlov I. G., Kalmykov V. V., Grechnaya I. Ya., Razdobreev V. G. Effect of heat treatment on corrosion resistance of technical iron. Zashchita metallov. 1998. Vol. 34. No. 5. pp. 507–510.
3. Shatalov R. L., Genkin A. L. Operating a sheet-rolling complex to minimize energy costs. Metallurgist. 2008. Vol. 52, Iss. 9-10. pp. 485–490. DOI: 10.1007/s11015-009-9082-y
4. Zhikharev S. S., Grigoryan G. G., Shatalov R. L. Device for automatically regulating the rate of delivery of billets from the furnace. Certificate of authorship USSR, No. 1315061. Published: 07.06.1987. Bulletin No. 21.
5. Kugushin A. A., Uzlov I. G., Kalmykov V. V. et al. High-strength reinforcing steel. Moscow : Metallurgiya, 1986. 272 p.
6. Sychkov A. B., Zhigarev M. A., Perchatkin A. V. Technological features of production of widepurpose reinforcing bars. Magnitogorsk : GOU VPO "MGTU", 2006. 499 p.
7. Sychkov A. B., Zhigarev M. A., Krulik A. I. et al. Features of structure formation of reinforcing bars. Stal. 2010. No. 1. pp. 90–93.
8. Starodubov K. F., Uzlov I. G., Savenkov V. Ya. et al. Thermal hardening of rolled products. Moscow : Metallurgiya, 1970. 368 p.
9. Levandovskiy S. A., Moller A. B., Tulupov O. N., Baranov N. A. Experience of putting into practice and development prospects of digital twins in section rolling technological systems. CIS Iron and Steel Review. 2023. Vol. 26. pp. 64–69.
10. Levandovskiy. S. A., Moller A. B., Tulupov O. N., Nazarov D. A. Providing steel with an approximate application of the mechanical properties of wire rod 5.5–6.5 mm from steel grades 70–75 based on a conventional twin of the Stelmor process. CIS Iron and Steel Review. 2022. Vol. 23. pp. 28–32.
11. Uzlov I. G. Development of scientific principles and technological recommendations for creation of new compositions of carbon and economically alloyed steels for production of rolled metal with a high complex of properties (above 400 N/mm2) based on the control of temperaturedeformation parameters of rolling and the use of progressive heat treatment processes. Research report TM.033.92, No. GR 0193003598. Iron and Steel Institute. Dnepropetrovsk, 1995. 105 p.
12. Sychkov A. B., Malashkin S. O. Selection of technology for thermomechanical processing of reinforcing bars. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2013. No. 1 (13). pp. 53, 54.
13. GOST 10884–94. Thermomechanically hardened steel bars for reinforced concrete constructions. Specifications. Introduced: 01.01.1996.
14. GOST 5639–82. Steels and alloys. Methods for detection and determination of grain size. Introduced: 01.01.1983.
15. GOST 8233–56. Steel. Microstructure standards. Introduced: 01.07.1957.
16. GOST 1763–68. Steel. Methods for determination of decarbonized layer depth. Introduced: 01.01.1992.
17. GOST 1778–2022. Steel and alloy metal products. Metallographic methods for the determination of nonmetallic inclusions. Introduced: 01.06.2023.
18. GOST 10243–75. Steel. Methods for testing and estimation of macrostructures. Introduced: 01.01.1988.
19. DIN 50602–1985. Metallographic examination; microscopic examination of special steels using standard diagrams to assess the content of non-metallic inclusions (translated from German). Introduced: 01.01.1986.
20. ASTM E45-18a (2023). Standard test methods for determining the inclusion content of steel (translation from English). Introduced: 01.11.2023.
21. Sychkov A. B., Parusov E. V., Moller A. B. et al. Technology of heat treatment of reinforcing and shaped rolled products. Theory and metallurgical practice. Mauritius : Palmarium Academic Publishing, 2017. 264 p.
22. Madatyan S. A., Tikhonov I. N., Krasovskaya G. M. et al. Study of physical, mechanical and technological properties of reinforcing steel of At-V, At-VI classes for the purpose of implementation in construction production. Moscow : NIIZhB, 1989. 44 p.
23. GOST 34028–2016. Reinforcing rolled products for reinforced concrete constructions. Specifications. Introduced: 01.01.2018.
24. Sychkov A. B., Degtyarev A. V., Blokhin M. V. Mastering the production of reinforcing bars according to the new GOST 34028–2016. Aktualnye problemy nauki, tekhniki i obrazovaniya. 2019. Vol. 10. No. 1. pp. 30–35.
25. Uzlov I. G., Kalmykov V. V., Levchenko G. V. et al. Study of general corrosion processes in lowcarbon and low-alloy structural steels depending on their structural state and strength characteristics. Research report TM.010.96 (Final). Dnepropetrovsk, 1998. 76 p.
26. Uzlov I. G., Kalmykov V. V. Study of influence of deformation-heat treatment on patterns of behavior of structural steels in corrosive environments. Research report TM.005.93. No. GR 0193035300, Iron and Steel Institute. 1995. 51 p.
27. Kalmykov V. V., Grechnaya I. Ya., Razdobreev V. G. The influence of carbon and silicon on the corrosion behavior of thermally hardened reinforcing steels. Science, production, entrepreneurship – the development of metallurgy: collection of scientific works (Donetsk State Technical University, Donetsk Institute of Entrepreneurship METMASH-CLUB). Donetsk : Izdatelstvo "LIK", 1998. pp. 268–273.
28. Krugel J. Corrosion: Its character and consequences. ASTM Standartization News. 1981. Vol. 9, Iss. 5. pp. 21–23.
29. Zhuchkov S. M., Lokhmatov A. P., Andrianov N. V., Matochkin V. A. The rolling-separation process using non-driven dividing facilities. Theory and practice. Ukraine; Belarus, 2007. 284 p.
30. Kolmogorov G. L., Kuznetsova U. V. Technological residual stresses after metal forming. Vestink YuUrGU. Seriya: Metallurgiya. 2016. Vol. 16. No. 1. pp. 41–45.
31. Sidorenko O. G., Fedorova I. P., Demchenko E. M. et al. Methodology for calculating the parameters of multi-cycle cooling when hardening rod reinforcement. Stal. 1997. No. 12. pp. 49–52.
32. Madatyan S. A. Mass types of reinforcing steel with a composite structure for reinforced concrete structures. Ferrous metallurgy in Russia and the CIS countries in the 21st century. Vol. 4. Moscow : Metallurgiya, 1994. pp. 73–75.
33. Sutkovenko E. S., Voznaya V. I., Vedeneev A. V. Study of the mechanism of defects formation on reinforcement during multi-thread rolling with separation. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2023. Vol. 79. No. 2. pp. 118–125.
34. Kanaev A. T., Bogomolov A. V. Formation of a gradient-layered structure during deformationthermal treatment of reinforcing steel. Stal. 2020. No. 7. pp. 67–72.
35. Tempcore the new generation of high strength concrete reinforcing steels. Metallurgical Reports CRM, Benelux. 1982. Vol. 60. pp. 23–27.
36. Hortigon Fuentos B., Guillardo Fuentos J. M., Muñoz Moreno S., Gümpel P., Schrittmater J. Influence of bar thermal hardening via Tempcore method on their properties after stretching. Chernye Metally. 2019. No. 6. pp. 69–77.
37. Blinova E. N., Libman M. A., Petrovsky V. N., Pimenov E. V. Principles of creating materials with a spatial distribution of macroscopic areas with different physical and mechanical properties. Stal. 2021. No. 11. pp. 46–50.
38. Levchenko G. V., Vorobey S. A., Demina E. G. et al. Optimization of chemical composition and mechanical properties of rolled reinforcing bars for reinforced concrete constructions of underground structures. Metallurgicheskaya i gornorudnaya promyshlennost. 2006. No. 1. pp. 71–74.
39. Stolyarov V. I., Nikitin V. N., Efron L. I. et al. State and prospects for the development of technology and composition of high-strength weldable steels with a yield strength of 700 N/mm2Stal. 1993. No. 6. pp. 61–67.
40. Shatalov R. L., Medvedev V. A. Effect of deformed workpiece temperature inhomogeneity on mechanical properties of thin-walled steel vessels during treatment in a rolling and pressing line. Metallurgist. 2019. Vol. 63, Iss. 1-2. pp. 176–182. DOI: 10.1007/s11015-19-00807-W
41. Shatalov R. L., Medvedev V. A., Zagoskin E. E. Determination of mechanical properties of steel thinwalled vessels by hardness after hot screw rolling with subsequent stamping and quenching. Chernye Metally. 2019. No. 7. pp. 36–40.
42. Savrasov I. P., Vostrov M. S. Study of the strength, deformability and crack resistance of reinforced concrete slabs reinforced with factory-made welded and knitted products. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2022. Vol. 78. No. 8. pp. 705–717.
43. Sheksheev M. A., Sychkov A. B., Mikhailitsyn S. V., Shemetova E. S. Peculiarities of structure and properties formation of welded joints from reinforcing steels of A500C and B500C strength classes. Chernye Metally. 2021. No. 3. pp. 28–33.
44. Madatyan S. A., Padin O. I., Zborovsky L. A. et al. Scientific and technical report on the topic “Development of technical specifications for periodic profile reinforcing steel produced by the Moldavian Metallurgical Plant (MMZ).” Moscow : NIIZhB. 1999. 30 p.
45. Hickel T., Ponge D., Rohwerder M., Neugebauer J., Raabe D. Hydrogen atoms in steels. Chernye Metally. 2019. No. 1. pp. 64–65.
46. Ershov Yu. L., Shakurov A. G., Parshin V. M., Kolesnikov A. G., Shishov A. Yu. Hydrogen era in domestic metallurgy. Message 1. Stal. 2021. No. 11. pp. 50–56.
47. Ershov Yu. L., Shakurov A. G., Parshin V. M., Kolesnikov A. G., Shishov A. Yu. Hydrogen era in domestic metallurgy. Message 2. Stal. 2021. No. 12. pp. 48–57.
48. Naumenko V. V., Muntin L. V., Baranova O. A., Smetanin K. S. Resistance to hydrogen cracking of rolled structural steel after heat treatment. Stal. 2021. No. 3. pp. 44–50.
49. Kurbsky S. V., Velikotsky R. E., Dolzhikov V. V. Development of ideas about the hydrogen embrittlement mechanism based on the theory of molecular pressure of hydrogen. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2023. Vol. 79. No. 6. pp. 476–483.

Language of full-text russian
Full content Buy
Back