Journals →  Gornyi Zhurnal →  2024 →  #4 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName Integrated processing of phosphates and tailings
DOI 10.17580/gzh.2024.04.06
ArticleAuthor Pochitalkina I. A., Turaev D. Yu.
ArticleAuthorData

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia

I. A. Pochitalkina, Professor, Doctor of Engineering Sciences, pochitalkina@list.ru
D. Yu. Turaev, Leading Researcher, Doctor of Engineering Sciences

Abstract

Technological conversion of phosphate ores to fertilizers is preceded by processing of the raw material using a combination of physical, mechanical and chemical methods. The separated sludge contains residues of the main component (up to 5 wt. % P2O5), impurities of Fe3+ and Al compounds, as well as chemical reagents usable for enhancement of flotation efficiency. The lack of a sludge processing technology leads to the loss of P2O5, irrational use of land and to the waste disposal fines. To solve the problem, a scientifically based concept of integrated use of phosphorus-containing raw materials (including tailings and waste) with the process solution recycling is proposed, which is relevant in the conditions of high demand for mineral fertilizers and tightening environmental standards. Introduction of the low-grade raw material in production of fertilizes is hindered by the presence of Fe3+ impurities (Fe2O3/P2O5 ≥ 0.12) used by the authors to precipitate FePO4. After recovery of PO43- by an alkaline extract (97.1 wt%), the residual content of P(V) impurity in Fe(OH)3 was less than 0.80 wt%. The return of P(V) and Fe3+ compounds to the production cycle provides a wastefree technology. The calculated and experimental values of the concentrations of PO43-, Fe3+ and Ca2+ represent the boundary conditions for the integrated processing of natural and manmade phosphorus-containing raw materials into sodium, ammonium and calcium phosphate salts with by-production of ammonium and calcium nitrates.

The authors express a gratitude to the staff of the Center for Collective Use of the D. I. Mendeleev Russian State Technical University for their help in performing instrumental methods of analysis.

keywords Phosphate ore, tailings, sludge, selective sedimentation, integrated processing
References

1. The state and use of mineral resources of Russian Federation in 2016 and 2017 : State report. Moscow : Mineral-Info, 2018. 372 p.
2. The state and use of mineral resources of Russian Federation in 2018 : State report. Moscow : VIMS, 2019. 426 p.
3. National Balance-Sheet of Mineral Resources and Reserves in the Russian Federation as of 1 January 2011. Moscow, 2011. Vol. 43. Phosphate ore. 76 p.
4. The state and use of mineral resources of Russian Federation in 2019 : State report. Moscow : VIMS, 2020. 494 p.
5. Available at: https://docs.cntd.ru/document/552051127 (accessed: 25.03.2024).
6. Abbes N., Bilal E., Hermann L., Steiner G., Haneklaus N. Thermal beneficiation of Sra Ouertane (Tunisia) low-grade phosphate rock. Minerals. 2020. Vol. 10, Iss. 11. ID 937.
7. Derhy M., Taha Y., Hakkou R., Benzaazoua M. Review of the main factors affecting the flotation of phosphate ores. Minerlas. 2020. Vol. 10, Iss. 12. ID 1109.
8. Sun K., Liu T., Zhang Y., Liu X., Wang B. et al. Application and mechanism of anionic collector sodium dodecyl sulfate (SDS) in phosphate beneficiation. Minerals. 2017. Vol. 7, Iss. 2. ID 29.
9. Artemenko V. G. Action of acid concentration on the process of sulphuric decomposition of phosphorites of Kineshma occurrence. Vestnik KGU im. N. A. Nekrasova. 2014. Vol. 20, No. 6. pp. 28–31.
10. Wu C.-B. Studies on processing phosphorus ores in China. Yunnan Metallurgy. 2000. Vol. 163. pp. 19–22.
11. Lygach V. N. State-of-the-art and prospects of ground phosphate and glauconite production at GOP JSC in Voskresensk for agriculture and for chemical conversion to different marketable products. Khimicheskaya promyshlennost segodnya. 2004. No. 8. pp. 3–7.
12. Lygach A. V. State-of-the-art and prospects of using Egorievsk nodular phosphorite in the Voskresensky district, Moscow Region. MIAB. 2018. No. 6. pp. 29–37.
13. Kijkowska R., Pawlowska-Kozinska D., Kowalski Z., Jodko M., Wzorek Z. Wetprocess phosphoric acid obtained from Kola apatite. Purification from sul phates, fluorine, and metals. Separation and Purification Technology. 2002. Vol. 28, Iss. 3. pp. 197–205.
14. Wang B., Yang L., Luo T., Cao J. Study on the kinetics of hydration transformation from hemihydrate phosphogypsum to dihydrate phosphogypsum in simulated wet process phosphoric acid. acs Omega. 2021. Vol. 6, Iss. 11. pp. 7342–7350.
15. Angelov A. I., Sobolev N. V., Syrchenkov A. Ya., Almukhemetov I. A. Dressed superphosphate production from low-grade phosphate ore of the Egorievsk deposit. Khimicheskaya promyshlennost segodnya. 2006. No. 1. pp. 13–21.
16. Pérez-López R., Macías F., Cánovas C. R., Sarmiento A. M., Pérez-Moreno S. M. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures. Science of the Total Environment. 2016. Vol. 553. pp. 42–51.
17. Ma H., Feng X., Zeng B. Self-anticorrosion for the combustion tower of heat recovered thermal process phosphor ic acid production. Process Safety and Environmental Protection. 2018. Vol. 118. pp. 330–347.
18. Soussi-Baatout A., Brahim K., Khattech I., Kamoun L., Jemal M. Thermochemical and kinetic investigations of the phosphoric attack of Tunisian phosphate ore. Journal of Thermal Analysis and Calorimetry. 2018. Vol. 131, Iss. 3. pp. 3121–3132.
19. Pochitalkina I. A., Kondakov D. F., Makaev S. V., Sibiryakova I. B., Kostanov I. M. Sulfate additives for intensification of the filtration of low grade phosphoritenitric acid suspension. ChemChemTech. 2022. Vol. 65, No. 12. pp. 30–36.
20. Dobrydnev S. V., Beskov V. S., Bogach V. V., Pochitalkina I. A. Ionometric study of the acid decomposition of phosphate minerals. Theoretical Foundations of Chemical Engineering. 2001. Vol. 35, No. 3. pp. 292–297.
21. Shariati S., Ramadi A., Salsani A. Beneficiation of low-grade phosphate deposits by a combination of calcination and shaking Tables: Southwest Iran. Minirals. 2015. Vol. 5, Iss. 3. pp. 367–379.
22. Klassen P. V., Sushchev S. V., Klados D. K., Mironov V. E., Rakcheeva L. V. et al. Applicability of Russian phosphate ore in production of phosphoric acids and phosphoric fertilizers : A case-study of Egorievsk phosphate. Khimicheskaya promyshlennost segodnya. 2010. No. 2. pp. 24–31.
23. Nasri K., Chtara C., Hassen C., Fiallo M., Sharrock P. et al. Recrystallization of industrial triple super phosphate powder. Industrial and Engineering Chemistry Research. 2014. Vol. 53, Iss. 37. pp. 14446–14450.
24. Hartley T. N., Macdonald A. J., McGrath S. P., Zhao F. J. Historical arsenic contamination of soil due to long-term phosphate fertiliser applications. Environmental Pollution. 2013. Vol. 180. pp. 259–264.
25. Schipper L. A., Sparling G. P., Fisk L. M., Dodd M. B., Power I. L. et al. Rates of accumulation of cadmium and uranium in a New Zealand hill farm soil as a result of lo ng-term use of phosphate fertilizer. Agriculture, Ecosystems & Environment. 2011. Vol. 144, Iss. 1. pp. 95–101.
26. Turaev D. Yu., Pochitalkina I. A. Complex processing of phosphatic ores enrichment waste. Teoreticheskaya i prikladnaya ekologiya. 2021. No. 4. pp. 148–153.
27. Pochitalkina I. A., Kondakov D. F., Vinokurova O. V. Behavior of impurities of polpino phosphorites in acid extraction. Russian Journal of Inorganic Chemistry. 2018. Vol. 63, No. 5. pp. 583–586.
28. Pilipenko A. T. (Ed.). Quick Reference Book on Chemistry. Kiev : Naukova dumka, 1987. 829 p.
29. Angelov A. I., Korshunov V. V., Levin B. V. Prospects for introduction of low-grade phosphate ore in production of fertilizer. NIUIF Transactions. Moscow, 2004. pp. 287–293.
30. Alosmanov M. S., Aliev A. M., Binnetova N. M., Ibragimova S. M., Kuliev R. Kh. Analysis of production of superphosphate from mixture of apatite concentrate and Mazidagi phosphate ore. Khimicheskaya promyshlennost. 2010. Vol. 87, No. 2. pp. 59–62.
31. Levin B. V., Davydenko V. V., Sushchev S. V., Rakcheeva L. V., Kuzmicheva T. N. Currentness and practice of introduction of low-grade phosphate ore in production of compound fertilizers. Khimicheskaya promyshlennost segodnya. 2006. No. 11. pp. 11–18.
32. Arroug L., Elaatmani M., Zegzouti A., Aitbabram M. Low-grade phosphate tailings beneficiation via organic acid leaching: Process optimization and kinetic studies. Minerals. 2021. Vol. 11, Iss. 5. ID 492.
33. Brylyakov Yu. E., Gershenkop A. Sh., Lygach V. N. Up-to-date state and main directions of the technology for deep and complex processing of phosphorusbearing ores. Gornyi Zhurnal. 2007. No. 2. pp. 30–38.
34. Korshunov V. V. Improving of productions organization and management of the fertilizer industry development. Ekonomika promyshlennosti. 2012. No. 1. pp. 65–69.
35. Shavkun G. A., Repina A. A. Competitive advantages of Russian mineral fertilizer industry. Vestnik Tverskogo gosudarstvennogo universiteta. Seriya: Ekonomika i upravlenie. 2019. No. 1. pp. 217–225.
36. Turaev D. Yu., Pochitalkina I. A. Method of producing soluble phosphates of sodium, potassium and ammonium (versions). Patent RF, No. 2701320. Applied: 23.11.2018. Published: 25.09.2019. Bulletin No. 27.
37. Turaev D. Yu., Pochitalkina I. A. Method of producing soluble orthophosphates. Patent RF, No. 2703777. Applied: 25.01.2019. Published: 22.10.2019. Bulletin No. 30.
38. Turaev D. Yu., Pochitalkina I. A. Method of producing acidic and medium sodium, potassium and ammonium phosphates. Patent RF, No. 2701907. Applied: 03.12.2018. Published: 02.10.2019. Bulletin No. 28.
39. Turaev D. Yu., Pochitalkina I. A. Method of producing calcium acid phosphates. Patent RF, No. 2720285. Applied: 19.08.2019. Published: 28.04.2020. Bulletin No. 13.

Language of full-text russian
Full content Buy
Back