References |
1. Viertauer A., Mutsam N., Pernkopf F., Gantner A., Grimm G., Winkler W., Lammer G., Ratz A. Refractory condition monitoring and lifetime prognosis for Rh degasser. AISTech – Iron and Steel Technology Conference Proceedings. May 2019. 2019. pp. 1081–1089. DOI: 10.33313/377/111 2. Guo M., Parada S., Jones P. T., Boydens E., Dyck J. V., Blanpain B., Wollants P. Interaction of Al2O3-rich slag with MgO–C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface. Journal of the European Ceramic Society. 2009. No. 6 (29). pp. 1053–1060. DOI: 10.1016/j.jeurceramsoc.2008.07.063 3. Wang D., Li X., Wang H., Mi Y., Jiang M., Zhang Y. Dissolution rate and mechanism of solid MgO particles in synthetic ladle slags. Journal of Non-Crystalline Solids. 2012. No. 9 (358). pp. 1196–1201. DOI: 10.1016/j.jnoncrysol.2012.02.014 4. Nightingale S. A., Monaghan B. J. Kinetics of spinel formation and growth during dissolution of MgO in CaO–Al2O3–SiO2 Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2008. No. 5 (39). pp. 643–648. DOI: 10.1007/s11663-008-9186-y 5. Xu L., Chen M., Wang N., Yin X. Corrosion mechanism of MgAl2O4–CaAl4O7–CaAl12O19 composite by steel ladle slag: Effect of additives. Journal of the European Ceramic Society. 2017. No. 7 (37). pp. 2737–2746. DOI: 10.1016/j.jeurceramsoc.2017.02.025 6. Luz A. P., Leite F. C., Brito M. A. M., Pandolfelli V. C. Slag conditioning effects on MgO–C refractory corrosion performance. Ceramics International. 2013. No. 7 (39). pp. 7507–7515. DOI: 10.1016/j.ceramint.2013.03.001 7. Rocha V. C. D., Alves P. C., Pereira J. A. M., Leal L. P., Bielefeldt W. V., Vilela A. C. F. Experimental and thermodynamic analysis of MgO saturation in the CaO–SiO2–Al2O3–MgO slag system melted in a laboratory resistive furnace. Journal of Materials Research and Technology. 2019. No. 1 (8). pp. 861–870. DOI: 10.1016/j.jmrt.2018.05.022 8. Li X., Zhu B., Wang T. Effect of electromagnetic field on slag corrosion resistance of low carbon MgO–C refractories. Ceramics International. 2012. No. 3 (38). pp. 2105–2109. DOI: 10.1016/j.ceramint.2011.10.049 9. Preisker T., Gehre P., Schmidt G., Aneziris C.G., Wöhrmeyer C., Parr C. Kinetics of the formation of protective slag layers on MgO–MgAl2O4–C ladle bricks determined in laboratory. Ceramics International. 2019. No. July. pp. 1–8. DOI: 10.1016/j.ceramint.2019.08.282 10. Lee W. E., Zhang S. Direct and indirect slag corrosion of oxide and oxide-c refractories. 7th Int. Conference on Molten Slags Fluxes and Salts. 2004. pp. 309–320. 11. Liu Y., Wang L., Li G., Zhang Z., Xu X., Li Y., Chen J. Effect of Submicron-Carbon-Containing MgO–C Refractories on Carbon Pickup of Ultra-Low Carbon Steel. J. Ceram. Sci.Technol. 2018. Vol. 9. Iss. 2. pp. 141–148. 12. Brabie V. A study on the mechanism of reaction between refractory materials and aluminium deoxidized molten steel. Steel Research. 1997. No. 2 (68). pp. 54–60. DOI: 10.1002/srin.199700542 13. Park J. H., Min D. J. Solubility of carbon in CaO–B2O3 and BaO–B2O3 slags. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 1999. No. 6 (30). pp. 1045–1052. DOI: 10.1007/s11663-999-0110-x 14. Kuwata H. S. Solubility of Carbon in CaO–Al2O3 Melts. Metallurgical and Materials Transactions B. 1996. Vol. 27. No. 1. pp. 57–64. 15. Berryman R. A., Sommerville I. D. Carbon Solubility as Carbide in Calcium Silicate Melts. Metallurgical and Materials Transactions B. 1992. No. 23 ( April). pp. 223–227.
16. Park J. H., Min D. J , Song H. S. Carbide Capacity of CaO–Al2O3–CaF2 Slag at 1773 K. ISIJ International. 2002. No. 2 (42). pp. 127–131. 17. Park J. Y., Jung S. M., Sohn I. Carbon solubility in the CaO–SiO2–3MgO–CaF2 slag system. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2014. No. 2 (45). pp. 329–333. DOI: 10.1007/s11663-014-0028-9 18. Sinelnikov V. O., Kalisz D., Kuzemko R. D. Study of the phase and mineralogical properties of converter slag during splashing to improve lining resistance. Refractories and Industrial Ceramics. 2018. No. 4 (59). pp. 403–409. DOI: 10.1007/s11148-018-0244-y 19. Yuan Z., Wu Y., Zhao H., Matsuura H., Tsukihashi F. Wettability between molten slag and MgO–C refractories for the slag splashing process. ISIJ International. 2013. No. 4 (53). pp. 598–602. DOI: 10.2355/isijinternational.53.598 20. Fu L., Gu H., Huang A., Zou Y., Ni H. Enhanced corrosion resistance through the introduction of fine pores : Role of nano-sized intracrystalline pores. Corrosion Science. 2019. No. 161 (August). pp. 108182. DOI: 10.1016/j.corsci.2019.108182 21. Amini S., Brungs M., Jahanshahi S., Ostrovski O. Effects of additives and temperature on the dissolution rate and diffusivity of MgO in CaO–Al2O3 slags under forced convection. ISIJ International. 2006. No. 11 (46). pp. 1554–1559. DOI: 10.2355/isijinternational.46.1554 22. Zou Y., Gu H., Huang A., Zhang M., Zhang M. Effects of aggregate microstructure on slag resistance of lightweight Al2O3–MgO castable. Ceramics International. 2017. No. 18 (43). pp. 16495–16501. DOI: 10.1016/j.ceramint.2017.09.033 23. Svantesson J. L., Glaser B., Ersson M., White J. F., Jönsson P. G. Study of dynamic refractory wear by slags containing very high FeO contents under steelmaking conditions. Ironmaking & Steelmaking. 2021. Vol. 48. No. 5. pp. 607–618. DOI: 10.1080/03019233.2020.1827672 24. Petkov V., Jones P. T., Boydens E., Blanpain B., Wollants P. Chemical corrosion mechanisms of magnesia – chromite and chrome-free refractory bricks by copper metal and anode slag. Journal of the European Ceramic Society. 2007. Vol. 27. pp. 2433–2444. DOI: 10.1016/j.jeurceramsoc.2006.08.020 25. Sun S., Zhang L., Jahanshahi S. From viscosity and surface tension to marangoni flow in melts. Metallurgical and Materials Transactions B. 2003. No. 5 (34). pp. 517–523. DOI: 10.1007/s11663-003-0019-8 26. Jeon J., Kang Y., Park J. H., Chung Y. Corrosion-erosion behavior of MgAl2O4 spinel refractory in contact with high MnO slag. Ceramics International. 2017. No. 17 (43). pp. 15074–15079. DOI: 10.1016/j.ceramint.2017.08.034 27. Roduit N. JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.3.4. Acceptable at: https://jmicrovision.github.io (reference date: 29.06.2021). 28. Bale C. W., Bélisle E., Chartrand P., Decterov S. A., Eriksson G., Hack K., Jung I. H., Kang Y. B., Melançon J., Pelton A. D., Robelin C., Petersen S. FactSage thermochemical software and databases - recent developments. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry. 2009. No. 2 (33). pp. 295–311. DOI: 10.1016/j.calphad.2008.09.009 29. Cho M. K., Hong G. G., Lee S. K. Corrosion of spinel clinker by CaO–Al2O3–SiO2 ladle slag. Journal of the European Ceramic Society. 2002. No. 11 (22). pp. 1783–1790. DOI: 10.1016/S0955-2219(01)00509-X 30. Xin Y. Lou, Yin H. F., Tang Y., Wan Q. F., Gao K., Yuan H. D., Wang Z. W. Formation mechanism and characterization of gradient density in corundum–spinel refractory. Ceramics International. 2019. No. 6 (45). pp. 8023–8026. DOI: 10.1016/j.ceramint.2018.12.199 31. Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D. Global Sensitivity Analysis: The Primer. International Statistical Review. Chichester (England): John Wiley & Sons, 2008. 304 p. 32. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011. No. 85 (12). pp. 2825–2830. 33. Gramacy R. B. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC, 2020. https://bookdown.org/rbg/surrogates/chap4.html (accessed February 22, 2021). |