Журналы →  CIS Iron and Steel Review →  2024 →  №1 →  Назад

Refractories
Название Mechanism of MgO–C refractories corrosion interacting with CaO–MgO–Al2O3–SiO2–FeO slags
DOI 10.17580/cisisr.2024.01.04
Автор I. A. Krasnyanskaya, K. N. Anisimov, M. P. Gusev, M. G. Moshchenko, D. V. Karavaev
Информация об авторе

I. P. Bardin Central Research Institute of Ferrous Metallurgy (Moscow, Russia)

I. A. Krasnyanskaya*, Cand. Eng., Head of the Laboratory of Complex Chemical Researches, N. P. Lyakishev Scientific Center for Complex Processing of Raw Materials, iakrsn@gmail.com
K. N. Anisimov, Cand. Eng., Head of the Laboratory of Refractory Materials

 

LLC “Cyberphysics” (Moscow, Russia)
M. P. Gusev, Cand. Eng., Chief Business Development Officer

 

PAO NLMK (Lipetsk, Russia)
M. G. Moshchenko, Cand. Eng., Head of the Programs, Directorate of Researches and Developments
D. V. Karavaev, Engineer, Directorate of Researches and Developments

* Corresponding author


A. I. Volkov took part in the work

Реферат

In the production of ultra-low carbon steels, it is especially important to prevent the carburization of the melt. The latter can occur as a result of lining corrosion, when carbon ions transfer from the ladle lining to the melted steel. This process is mainly caused by the corrosive effect of slags on the refractory and is associated with their chemical composition and physical properties, such as viscosity. While many slag-refractory systems are currently used in the steel making, such systems often lack sufficient data for the strict modeling of the interaction process. In this work, we investigate the corrosive behavior of various slags on MgO–C lining in order to minimize the increase in carbon during the dynamo steel production. It is established that the main factor influencing the wear of the lining is its phase composition. Spinel, which forms at the slag-refractory interface, can be washed out from the boundaries of the lining, exposing its internal layers to the slag. However, in the presence of calcium aluminate CaAl4O7 in the remaining melt, the intensive washout of the spinel layers is inhibited. These components act as a protective factor even when MgO content in the slag is relatively low. Thus, by changing the composition of the slag, it is possible to obtain extremely low wear of MgO–C refractories even with small MgO content in the slag and therefore reduce the subsequent carburization of the metal caused by corrosion of the refractories in the slag zone.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ключевые слова Periclase, MgO–C refractories, spinel, calcium aluminate, refractory corrosion, slag, phase composition, dynamo steel
Библиографический список

1. Viertauer A., Mutsam N., Pernkopf F., Gantner A., Grimm G., Winkler W., Lammer G., Ratz A. Refractory condition monitoring and lifetime prognosis for Rh degasser. AISTech – Iron and Steel Technology Conference Proceedings. May 2019. 2019. pp. 1081–1089. DOI: 10.33313/377/111
2. Guo M., Parada S., Jones P. T., Boydens E., Dyck J. V., Blanpain B., Wollants P. Interaction of Al2O3-rich slag with MgO–C refractories during VOD refining-MgO and spinel layer formation at the slag/refractory interface. Journal of the European Ceramic Society. 2009. No. 6 (29). pp. 1053–1060. DOI: 10.1016/j.jeurceramsoc.2008.07.063
3. Wang D., Li X., Wang H., Mi Y., Jiang M., Zhang Y. Dissolution rate and mechanism of solid MgO particles in synthetic ladle slags. Journal of Non-Crystalline Solids. 2012. No. 9 (358). pp. 1196–1201. DOI: 10.1016/j.jnoncrysol.2012.02.014
4. Nightingale S. A., Monaghan B. J. Kinetics of spinel formation and growth during dissolution of MgO in CaO–Al2O3–SiO2 Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2008. No. 5 (39). pp. 643–648. DOI: 10.1007/s11663-008-9186-y
5. Xu L., Chen M., Wang N., Yin X. Corrosion mechanism of MgAl2O4–CaAl4O7–CaAl12O19 composite by steel ladle slag: Effect of additives. Journal of the European Ceramic Society. 2017. No. 7 (37). pp. 2737–2746. DOI: 10.1016/j.jeurceramsoc.2017.02.025
6. Luz A. P., Leite F. C., Brito M. A. M., Pandolfelli V. C. Slag conditioning effects on MgO–C refractory corrosion performance. Ceramics International. 2013. No. 7 (39). pp. 7507–7515. DOI: 10.1016/j.ceramint.2013.03.001
7. Rocha V. C. D., Alves P. C., Pereira J. A. M., Leal L. P., Bielefeldt W. V., Vilela A. C. F. Experimental and thermodynamic analysis of MgO saturation in the CaO–SiO2–Al2O3–MgO slag system melted in a laboratory resistive furnace. Journal of Materials Research and Technology. 2019. No. 1 (8). pp. 861–870. DOI: 10.1016/j.jmrt.2018.05.022
8. Li X., Zhu B., Wang T. Effect of electromagnetic field on slag corrosion resistance of low carbon MgO–C refractories. Ceramics International. 2012. No. 3 (38). pp. 2105–2109. DOI: 10.1016/j.ceramint.2011.10.049
9. Preisker T., Gehre P., Schmidt G., Aneziris C.G., Wöhrmeyer C., Parr C. Kinetics of the formation of protective slag layers on MgO–MgAl2O4–C ladle bricks determined in laboratory. Ceramics International. 2019. No. July. pp. 1–8. DOI: 10.1016/j.ceramint.2019.08.282
10. Lee W. E., Zhang S. Direct and indirect slag corrosion of oxide and oxide-c refractories. 7th Int. Conference on Molten Slags Fluxes and Salts. 2004. pp. 309–320.
11. Liu Y., Wang L., Li G., Zhang Z., Xu X., Li Y., Chen J. Effect of Submicron-Carbon-Containing MgO–C Refractories on Carbon Pickup of Ultra-Low Carbon Steel. J. Ceram. Sci.Technol. 2018. Vol. 9. Iss. 2. pp. 141–148.
12. Brabie V. A study on the mechanism of reaction between refractory materials and aluminium deoxidized molten steel. Steel Research. 1997. No. 2 (68). pp. 54–60. DOI: 10.1002/srin.199700542
13. Park J. H., Min D. J. Solubility of carbon in CaO–B2O3 and BaO–B2O3 slags. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 1999. No. 6 (30). pp. 1045–1052. DOI: 10.1007/s11663-999-0110-x
14. Kuwata H. S. Solubility of Carbon in CaO–Al2O3 Melts. Metallurgical and Materials Transactions B. 1996. Vol. 27. No. 1. pp. 57–64.
15. Berryman R. A., Sommerville I. D. Carbon Solubility as Carbide in Calcium Silicate Melts. Metallurgical and Materials Transactions B. 1992. No. 23 ( April). pp. 223–227.

16. Park J. H., Min D. J , Song H. S. Carbide Capacity of CaO–Al2O3–CaF2 Slag at 1773 K. ISIJ International. 2002. No. 2 (42). pp. 127–131.
17. Park J. Y., Jung S. M., Sohn I. Carbon solubility in the CaO–SiO2–3MgO–CaF2 slag system. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 2014. No. 2 (45). pp. 329–333. DOI: 10.1007/s11663-014-0028-9
18. Sinelnikov V. O., Kalisz D., Kuzemko R. D. Study of the phase and mineralogical properties of converter slag during splashing to improve lining resistance. Refractories and Industrial Ceramics. 2018. No. 4 (59). pp. 403–409. DOI: 10.1007/s11148-018-0244-y
19. Yuan Z., Wu Y., Zhao H., Matsuura H., Tsukihashi F. Wettability between molten slag and MgO–C refractories for the slag splashing process. ISIJ International. 2013. No. 4 (53). pp. 598–602. DOI: 10.2355/isijinternational.53.598
20. Fu L., Gu H., Huang A., Zou Y., Ni H. Enhanced corrosion resistance through the introduction of fine pores : Role of nano-sized intracrystalline pores. Corrosion Science. 2019. No. 161 (August). pp. 108182. DOI: 10.1016/j.corsci.2019.108182
21. Amini S., Brungs M., Jahanshahi S., Ostrovski O. Effects of additives and temperature on the dissolution rate and diffusivity of MgO in CaO–Al2O3 slags under forced convection. ISIJ International. 2006. No. 11 (46). pp. 1554–1559. DOI: 10.2355/isijinternational.46.1554
22. Zou Y., Gu H., Huang A., Zhang M., Zhang M. Effects of aggregate microstructure on slag resistance of lightweight Al2O3–MgO castable. Ceramics International. 2017. No. 18 (43). pp. 16495–16501. DOI: 10.1016/j.ceramint.2017.09.033
23. Svantesson J. L., Glaser B., Ersson M., White J. F., Jönsson P. G. Study of dynamic refractory wear by slags containing very high FeO contents under steelmaking conditions. Ironmaking & Steelmaking. 2021. Vol. 48. No. 5. pp. 607–618. DOI: 10.1080/03019233.2020.1827672
24. Petkov V., Jones P. T., Boydens E., Blanpain B., Wollants P. Chemical corrosion mechanisms of magnesia – chromite and chrome-free refractory bricks by copper metal and anode slag. Journal of the European Ceramic Society. 2007. Vol. 27. pp. 2433–2444. DOI: 10.1016/j.jeurceramsoc.2006.08.020
25. Sun S., Zhang L., Jahanshahi S. From viscosity and surface tension to marangoni flow in melts. Metallurgical and Materials Transactions B. 2003. No. 5 (34). pp. 517–523. DOI: 10.1007/s11663-003-0019-8
26. Jeon J., Kang Y., Park J. H., Chung Y. Corrosion-erosion behavior of MgAl2O4 spinel refractory in contact with high MnO slag. Ceramics International. 2017. No. 17 (43). pp. 15074–15079. DOI: 10.1016/j.ceramint.2017.08.034
27. Roduit N. JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.3.4. Acceptable at: https://jmicrovision.github.io (reference date: 29.06.2021).
28. Bale C. W., Bélisle E., Chartrand P., Decterov S. A., Eriksson G., Hack K., Jung I. H., Kang Y. B., Melançon J., Pelton A. D., Robelin C., Petersen S. FactSage thermochemical software and databases - recent developments. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry. 2009. No. 2 (33). pp. 295–311. DOI: 10.1016/j.calphad.2008.09.009
29. Cho M. K., Hong G. G., Lee S. K. Corrosion of spinel clinker by CaO–Al2O3–SiO2 ladle slag. Journal of the European Ceramic Society. 2002. No. 11 (22). pp. 1783–1790. DOI: 10.1016/S0955-2219(01)00509-X
30. Xin Y. Lou, Yin H. F., Tang Y., Wan Q. F., Gao K., Yuan H. D., Wang Z. W. Formation mechanism and characterization of gradient density in corundum–spinel refractory. Ceramics International. 2019. No. 6 (45). pp. 8023–8026. DOI: 10.1016/j.ceramint.2018.12.199
31. Saltelli A., Ratto M., Andres T., Campolongo F., Cariboni J., Gatelli D. Global Sensitivity Analysis: The Primer. International Statistical Review. Chichester (England): John Wiley & Sons, 2008. 304 p.
32. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research. 2011. No. 85 (12). pp. 2825–2830.
33. Gramacy R. B. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC, 2020. https://bookdown.org/rbg/surrogates/chap4.html (accessed February 22, 2021).

Полный текст статьи Mechanism of MgO–C refractories corrosion interacting with CaO–MgO–Al2O3–SiO2–FeO slags
Назад