Название |
Using of thermal cycling to improve the strength
properties of steel |
Информация об авторе |
Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)
V. B. Kuskov, Cand. Eng., Associate Prof., Dept. of Mineral Processing, e-mail: Kuskov_VB@pers.spmi.ru E. S. Iliin, Ph. D. Student, Dept. of Mineral Processing, e-mail: s235069@stud.spmi.ru |
Реферат |
Ferrum is the metal which is mostly used by people. Our usual life is impossible in conventional way without ferrum. Ferrum is also the base for iron and steel, and steel is the most widely used construction material for the industries. The properties of this material are very important and steel application areas are determined depending on these properties. Different methods of steel processing are used for improvement of its quality. One of this methods is presented by heat treatment, in particular – thermal cycling, which allows to improve substantially mechanical properties of steel. There are many variants of heat treatment for steels, however, thermal cycling has still large field for further investigations. Based on the modern technical level, heat treatment processes can be carried out with heating rate varying from parts of grades per second to hundreds of grades per second. It is also possible to vary number of heating and cooling cycles, what has significant effect on mechanical properties of processed steel. Additionally, the processes after heat treatment provide apparent influence on these properties. Mechanical steel processing after conducted heat treatment also has the effect on steel properties. Conduction of metal processing according to incorrect operating modes can have very negative consequences for steel properties. Wrong operation with material can seriously deteriorate obtained steel properties after heat treatment. The paper presents the experiences of thermal cycling of ShKh-15 steel and the conditions allowing to obtain optimal steel strength properties are determined. |
Библиографический список |
1. Litvinenko V. S., Petrov V. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessmemt of the state role in management of mineral resources. Zapiski Gornogo instituta. 2023. Vol. 259. pp. 95–111. DOI: 10.31897/PMI.2022.100 2. Litvinenko V. S., Sergeev I. B. Innovations as a Factor in the Development of the Natural Resources Sector. Studies on Russian Economic Development. 2019. Vol. 30. No. 6. pp. 637—645. DOI: 10.1134/S107570071906011X 3. Nedosekin A. O., Reishakhrit E. I., Kozlovskiy A. N. Strategic approach to evaluation of economical stability of the objects of Russian mineral and raw material complex. Zapiski Gornogo instituta. 2019. Vol. 237. pp. 354–360. DOI: 10.31897/PMI.2019.3.354 4. Yurak V. V., Dushin A. V., Mochalova L. A. Against sustainable development: the future scenarios. Zapiski Gornogo instituta. 2020. Vol. 242. pp. 242–247. DOI: 10.31897//PMI.2020.2.242 5. Aleksandrova T. N. Complex and deep processing of mineral raw materials of natural and technogenic origin: state and prospects. Zapiski Gornogo instituta. 2022. Vol. 256. pp. 503–504. 6. Trushko V. L., Trushko O. V. Complex development of iron ore deposits on the base of competitive underground geotechnologies. Zapiski Gornogo instituta. 2021. Vol. 250. pp. 569–577. DOI: 10.31897/PMI.2021.4.10 7. Saginashvili D. G., Ryabova V. D., Zakirova M. I. Analysis of steelmaking industry in Russia. Vestnik universiteta. 2021. No. 1 (8). pp. 81–88. DOI: 10.26425/1816-4277-2021-8-81-88 8. Nikulin S. A. et al. Influence of high temperatures on mechanical properties of steel 22K. Deformatsiya i razrushenie materialov. 2020. No. 5. pp. 22–26. DOI: 10.31044/1814-4632-2020-5-22-26 9. Bazhin V. Yu., Issa B. Influence of heat treatment on microstructure of steel tubing coils in a tubular heating furnace. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 393–400. DOI: 10.31897/PMI.2021.3.8 10. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of manufacturing technology for high-strength shell steel providing decrease of production cycle and high quality of sheets. Zapiski Gornogo instituta. 2019. Vol. 239. p. 536. DOI: 10.31897/pmi.2019.5.536 11. Gordienko V. V. et al. Inf luence of heat treatment and thermal cycling on mechanical properties of structural steels. Vestnik grazhdanskikh inzhenerov. 2018. No. 1. pp. 128–133. DOI: 10.23968/1999-5571-2018-15-1-128-133 12. Karimov N. K., Ashurov Kh. Kh. Increase of impact toughness of structural steels via thermal cycling. Natural and technical sciences: the problems of interdisciplinary synthesis. Scientific proceedings of International scientific and practical conference. Belgorod, December 25, 2020. Agenstvo perspektivnykh nauchnykh issledovaniy (APNI). 2020. pp. 40–43. 13. Kaparov S. A., Zholdoshov B. M., Mamatkadyrova B. B. Thermal cycling of structural steels 30KhGSA and 45Kh. Mashinovedenie. 2022. No. 1 (15). pp. 65–71.
14. Shmatov A. A. Thermal cycling methods for volumetric strengthening of steel tools. Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovaniy. 2021. No. 7. pp. 56–60. 15. Yusupov A. A., Fazilov D. S., Abdukarimova F. A., Berdiev D. M. Thermal cycling technologies for increase of wear resistance. Central Asian Journal of Theoretical and Applied Science. 2023. No. 4 (4). pp. 15–19. DOI: 10.17605/OSF.IO/RY8GN 16. Berdiev D. M., Faizullaev S. S. Wear resistance increase for gear wheels via thermal cycling. Universum: tekhnicheskie nauki. 2023. No. 1–2 (106). pp. 15–18. 17. Afanasyev V. K., Popova M. V. Use of thermal cycling deformation for improvement of low carbon steel operating properties. Metallovedenie i termicheskaya obrabotka metallov. 2022. No. 12. pp. 3–9. DOI: 10.30906/mitom.2022.12.3-9 18. Zhao X. et al. The effect of thermal cycling on direct laser-deposited gradient H13 tool steel: Microstructure evolution, nanoprecipitation behaviour, and mechanical properties. Materials Today Communications. 2020. Vol. 25. p. 101390. DOI: 10.1016/j.mtcomm.2020.101390 19. Oñoro M. et al. Mechanical properties and stability of precipitates of an ODS steel after thermal cycling and aging. Nuclear Materials and Energy. 2020. Vol. 24. p. 100758. DOI: 10.1016/j.nme.2020.100758 20. Lan L., Shao G. Morphological evolution of HAZ microstructures in low carbon steel during simulated welding thermal cycle. Micron. 2020. Vol. 131. p. 102828. DOI: 10.1016/j.micron.2020.102828 21. Gordienko V. et al. Structural changes in structural steels during thermal cycling. Architecture and Engineering. 2021. Vol. 6. No. 2. pp. 70–76. 22. Liu Q. et al. Effect of thermal cycling on the corrosion behaviour of stainless steels and Ni-based alloys in molten salts under air and argon. Solar Energy. 2022. Vol. 238. pp. 248–257. 23. Ghaemifar S. et al. Improved properties of dual-phase steel via pre-intercritical annealing treatment and thermal cycling. Materials Science and Technology. 2020. Vol. 36. No. 15. pp. 1663–1670. DOI: 10.1080/02670836.2020.1818511 24. Hu W. et al. Improving the cycle fatigue life of spring steel by a novel thermal cycling process. Materials Research Express. 2021. Vol. 8. No. 5. p. 056516. DOI: 10.1088/2053-1591/ac006c 25. Fernández-González D., Ruiz-Bustinza I., Mochón J., González-Gasca C., Verdeja L. F. Iron ore sintering: Process. Mineral Processing and Extractive Metallurgy Review. 2017. Vol. 38. No. 4. pp. 215—227. 26. Urbanovich N. I., Korneev S. V., Volosatikov V. I., Komarov D. O. Analysis of composition and processing technologies for dispersed iron-containing wastes. Lityo i metallurgiya. 2021. No. 4. pp. 66–69. DOI: 10.21122/1683-6065-2021-4-66-69 27. Kim K. M., Bae J. H., Han J. W. Effect of Aspect Ratio on Iron-Ore Briquettes DuringTwin-Roll Briquetting. Archives of Metallurgy and Materials. 2020. Vol. 65. No. 4. pp. 1335—1339. 28. Khalifa A. A., Bazhin V. Yu., Ustinova Ya. V., Shalabi M. E. Kh. Research on the reduction of iron oxide from red mud pellets using coke. Obogashchenie rud. 2021. No. 4. pp. 46–51. 29. Aleksandrova T. N., Nikolaeva N. V., Artamonov I. S. Optimization of composition of fuel briquettes. Gornyi informatsionnoanaliticheckiy byulleten. 2022. No. 6–2. pp. 149–160. DOI: 10.25018/0236_1493_2022_62_0_149 30. Kurunov I. F., Bizhanov A. M. Brexes as the new stage in agglomeration of raw materials for blast furnaces. Metallurg. 2014. No. 3. pp. 49–53. 31. Kurunov I. F., Chizhikova V. M., Bizhanov A. M. The best acceptable technologies in production of agglomerated raw materials for blast furnaces. Chernaya metallurgiya, Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2018. Vol. 1. No. 4. pp. 62–66. 32. Bizhanov A. M., Podgorodetskiy G. S. on motion of briquetting mass in extruder. Exact solutions. Message 1. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2020. Vol. 63. No. 1. pp. 7–12. 33. Bizhanov A. M. Synergy of agglomeration and briquetting in blast furnace practice. Metallurg. 2021. No. 7. pp. 20–28. 34. Bizhanov A. M., Zagainov S. A. Testing of briquettes for mechanical strength. Metallurg. 2021. No. 3. pp. 11–18. 35. Mikhailov A. V., Fedorov A. S. Analysis of parameters of a die of screw press for 3D extrusion of peat pieces of tubular type. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 351–365. DOI: 10.31897/PMI.2021.3.4 36. Kuskov V. B., Ilyin E. S. Study of agglomeration process via extrusion for different kinds of raw materials. Gornyi informatsionno-analiticheckiy byulleten. 2022. No. 6–1. pp. 279–289. DOI: 10.25018/0236_1493_2022_61_0_279 |