Journals →  Chernye Metally →  2024 →  #7 →  Back

Welding and Surfacing
ArticleName Study of the structure and properties of the alloy produced by arc surfacing with high-entropy flux-cored wire of the Al – Co – Cr – Fe – Mn system
DOI 10.17580/chm.2024.07.11
ArticleAuthor R. E. Kryukov, A. R. Mikhno, I. A. Panchenko, S. V. Konovalov
ArticleAuthorData

Siberian State Industrial University, Novokuznetsk, Russia

R. E. Kryukov, Dr. Eng., Associate Prof., Prof., Dept. of Metallurgy of Ferrous Metals and Chemical Technology, e-mail: rek_nzrmk@mail.ru
A. R. Mikhno, Postgraduate Student, Director of the Scientific and Production Center “Welding Processes and Technologies”, e-mail: mikno-mm131@mail.ru
I. A. Panchenko, Cand. Eng., Senior Researcher, Dept. of Scientific Research, e-mail: i.r.i.ss@yandex.ru
S. V. Konovalov, Dr. Eng., Prof., Vice-Rector for Scientific and Innovation Activities, e-mail: konovalov@sibsiu.ru

Abstract

Using the method of electric arc surfacing under a layer of flux, studies were carried out on the production of an alloy using flux-cored wire of the Al-Co-Cr-Fe-Mn system. In laboratory conditions, flux-cored wire was produced containing powders: chromium PH-1S according to TU 14-1-1474-75, manganese MR-0 according to GOST 6008-82, aluminum ASD-4 according to TU 1791-99-019-98, cobalt PC -1у according to GOST 9721-79. By automatic surfacing under a layer of AN-348A grade flux, a full-profile sample was manufactured for further research: determining the chemical composition of the alloy, conducting a study of microhardness, nanohardness and Young’s modulus, conducting mechanical tests for impact strength and tensile, identifying patterns in the formation of the microstructure of samples depending on on the distance from the fusion zone using transmission electron microscopy. As a result of scientific research, it was determined that the alloy obtained during the study has increased hardness compared to the substrate, however, the high hardness of the resulting alloy is accompanied by the fragility of the material, which is confirmed by the results of mechanical tests. An electron microscopic study of the alloy revealed that the alloy near the surfacing surface is characterized by a two-phase structure consisting of lath and lamellar martensite and individual ferrite grains. It is shown that a change in the rate of crystallization and cooling in the fusion zone of the surfacing and the substrate led to an increase in the volume fraction of the martensite phase and an increase in its dispersity and defectiveness. The results obtained during the study indicate the prospects of using the resulting alloy in the manufacture of wear-resistant coatings and products.
The authors express their gratitude to their colleagues for the financial support of the study by the Russian Science Foundation. The study was supported by the Russian Science Foundation grant No. 23-29-00350, https://rscf.ru/project/23-29-00350/.

keywords Flux-cored wire, electric arc surfacing, microhardness, high-entropy materials, microstructure, impact strength, nanohardness, Young’s modulus, mechanical characteristics
References

1. Osintsev K. A., Konovalov S. V., Glezer A. M., Gromov V. E. et al. Research on the structure of Al2.1Co0.3Cr0.5FeNi2.1 high-entropy alloy at submicro- and nano-scale levels. Materials Letters. 2021. Vol. 294. 129717. DOI: 10.1016/j.matlet.2021.129717
2. Zhang Y. High-entropy materials: a brief introduction. Singapore, Springer Nature, 2019. 159 p.
3. Chen T. K., Shun T. T., Yeh J. W., Wong M. S. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and Coatings Technology. 2004. Vol. 188-189, No. 1-3 SPEC.ISS. pp. 193–200. DOI: 10.1016/j.surfcoat.2004.08.023
4. Bataeva Z. B., Ruktuev A. A., Ivanov I. V. et al. Review of studies of alloys developed based on the entropy approach. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty). 2021. Vol. 23.No. 2. pp. 116–146. DOI: 10.17212/1994-6309-2021-23.2-116-146
5. Cantor B. Multicomponent and high entropy alloys. Entropy. 2014. Vol. 16, Iss. 9. pp. 4749–4768. DOI: 10.3390/e16094749
6. Cantor B. Stable and metastable multicomponent alloys. Annales de Chimie Science des Matériaux. 2007. Vol. 32, Iss. 3. pp. 245–256. DOI: 10.3166/acsm.32.245-256
7. Osintsev K. A., Konovalov S. V., Gromov V. E., Ivanov Y. F. et al. Microstructure and mechanical properties of non-equiatomic Co25.4Cr15Fe37.9Mn3.5Ni16.8Si1.4 high-entropy alloy produced by wire-arc additive manufacturing. Materials Letters. 2022. Vol. 312. 131675. DOI: 10.1016/j.matlet.2022.131675
8. Rogachev A. S. Structure, stability and properties of high-entropy alloys. Fizika metallov i metallovedenie. 2020. Vol. 121. No. 8. pp. 807–841. DOI: 10.31857/S0015323020080094
9. Ji W., Wang W., Wang H., Zhang J. et al. Short communication. Intermetallics. 2015. Vol. 56. pp. 24–27. DOI: 10.1016/j.intermet.2014.08.008
10. Miracle D. B., Senkov O. N. A critical review of high entropy alloys and related concepts. Acta Materialia. 2017. Vol. 122. pp.448–511. DOI: 10.1016/j.actamat.2016.08.081
11. Osintsev K. A., Gromov V. E., Vorobyov S. V. et al. The influence of electron beam processing on the defect substructure of a high-entropy alloy of the Co-Cr-Fe-Mn-Ni system. Izvestiya vuzov. Chernaya metallurgiya. 2022. Vol. 65. No. 4. pp. 254–260. DOI: 10.17073/0368-0797-2022-4-254-260
12. Geng Y., Konovalov S. V., Chen X. Research status and application of the high-entropy and traditional alloys fabricated via the laser cladding. Progress in Physics of Metals. 2020. Vol. 21, Iss. 1. pp. 26–45. DOI: 10.15407/ufm.21.01.026
13. Astafurova E. G., Reunova K. A., Astafurov S. V. et al. The influence of phase transformations in the process of electron beam 3D printing and subsequent heat treatment on the patterns of plastic deformation and destruction of high-nitrogen Cr-Mn steel samples. Izvestiya vuzov. Fizika. 2021. Vol. 64. No. 7 (764). pp. 10–17. DOI: 10.17223/00213411/64/7/10
14. Yakovlev A. V., Lebedev G. S., Luzanov O. R. Prospects and technology for the development of WAAM. Current issues of aviation and cosmonautics: proceedings of the VIII International Scientific and Practical Conference dedicated to Cosmonautics Day. In 3 volumes, Krasnoyarsk, April 11–15, 2022. Edited by Yu. Yu. Loginov. Vol. 1. Krasnoyarsk : Reshetnev Siberian State University of Science and Technology, 2022. pp. 560–563.
15. Tang W.-Y., Yeh J.-W. Effect of aluminum content on plasma-nitrided AlxCoCrCuFeNi highentropy alloys. Metallurgical and Materials Transactions: A. 2009. Vol. 40. pp. 1479–1486. DOI: 10.1007/s11661-009-9821-5
16. Gu J., Ni S., Liu Y., Song M. Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Materials Science and Engineering: A. 2019. Vol. 755. pp. 289–294. DOI: 10.1016/j.msea.2019.04.025
17. Kuznetsov A.V., Salishchev G.A., Senkov O.N. et al. The influence of microstructure on mechanical properties during tension of a high-entropy AlCoCrCuFeNi alloy. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika. 2012. No. 11(130). pp. 182–196.
18. Ma X., Xu Y., Chen J. et al. Microstructure and mechanical properties of cold drawing CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds. 2019. Vol. 795. pp. 45–53. DOI: 10.1016/j.jallcom.2019.04.296
19. Shaysultanov D. G., Stepanov N. D., Salishchev G. A., Tikhonovsky M. A. Effect of heat treatment on the structure and hardness of high-entropy alloys CoCrFeNiMnVx (x = 0.25, 0.5, 0.75, 1). Fizika metallov i metallovedenie. 2017. Vol. 118. No. 6. pp. 610–621. DOI: 10.7868/S0015323017060080
20. Kochetov N. A., Rogachev A. S., Shchukin A. S. et al. Mechanical alloying with partial amorphization of a multicomponent powder mixture Fe-Cr-Co-Ni-Mn and its electric spark plasma sintering to obtain a compact high-entropy material. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2018. No. 2. pp. 35–42. DOI: 10.17073/1997-308X-2018-2-35-42
21. Technical Specification (TU) 14-1-1474–75. Reduced chromium powder. Introduced: 01.07.1976.
22. GOST 6008–82. Metallic manganese and nitrided manganese. Introduced: 01.07.1991.
23. Technical Specification (TU) 1791-99-019–98. Aluminum powder.
24. GOST 9721–79. Cobalt powder. Technical requirements. Introduced: 01.01.1981.
25. GOST 9087–81. Welding melted fluxes. Specifications. Introduced: 01.01.1982.
26. GOST 26101–84. Welding powder wire. Specifications. Introduced: 01.01.1986.
27. GOST 12344–2003. Alloyed and high-alloyed steels. Methods for determination of carbon. Introduced: 01.09.2004.
28. GOST 12345–2001. Alloyed and high-alloyed steels. Methods of sulphur determination. Introduced: 01.03.2002.
29. GOST 12347–77. Alloy and high-alloy steels. Methods for determination of phosphorus. Introduced: 01.01.1978.
30. GOST 9450–76. Measurement of microhardness by diamond instruments indentation. Introduced: 01.01.1977.

Language of full-text russian
Full content Buy
Back