Журналы →  Obogashchenie Rud →  2024 →  №4 →  Назад

BENEFICIATION PROCESSES
Название Effect of ultrasonic treatment parameters on acidophilic microorganisms for bacterialchemical leaching
DOI 10.17580/or.2024.04.04
Автор Ocheretyana S. O., Iodis V. A.
Информация об авторе

Scientific Research Geotechnological Center of Far Eastern Branch of RAS (Petropavlovsk-Kamchatsky, Russia)

Ocheretyana S. O., Senior Researcher, Candidate of Biological Sciences, blossom-so@yandex.ru
Iodis V. A., Leading Researcher, Candidate of Engineering Sciences, iodisva@mail.ru

Реферат

This study investigates the impact of ultrasonic irradiation on the population of acidophilic chemolithotrophic bacteria at the Shanuch deposit, since ultrasonic treatment has a positive effect on the rate of bacterial-chemical leaching of ores. The bacterial culture under investigation includes species such as Acidithiobacillus thiooxidans, A. ferrooxidans and Sulfobacilus thermosulfidooxidans, which are crucial for bioleaching processes. In the experiments, the bacterial suspension was subjected to ultrasonic treatment at various time intervals (1, 3, 5, 10, 15, 20, and 30 minutes) with different vibration intensities (4.2, 7.2, and 11.0 W/cm2) and different feeding modes. Topdown and bottom-up feeding modes were examined, conventionally known as counter-current feeding modes. The results indicate that increasing the intensity of ultrasonic treatment beyond 4.2 W/cmand prolonging the exposure time significantly reduced the number of bacteria in the mixed culture isolated from the Shanuch deposit ore. Notably, bacteria that are typically resistant to adverse environmental factors such as high temperature and acidic conditions were less tolerant to ultrasonic irradiation. At an intensity exceeding 11 W/cm2, the bacterial count decreased by up to 99.9 % after prolonged exposure. The pH and Eh values of the suspension remained stable throughout the experiments, suggesting that ultrasonic irradiation had minimal impact on these environmental parameters. Overall, the study found that ultrasonic treatment effectively reduced bacterial counts in the mixed culture, with the reduction effect becoming more pronounced with increased duration and intensity of the irradiation.

Ключевые слова Acidophiles, chemolithotrophs, bioleaching, acidophilic microorganisms, biotechnological processes, ultrasonic treatment, bacterial count
Библиографический список

1. Karavaiko G. I. Microorganisms and their role in biogeotechnology of metals. Biogeotechnology of metals. Moscow: Center for International Projects of the State Committee on Science and Technology, 1989. pp. 11–50.
2. Johnson D. B., Hallberg K. B. Acid mine drainage remediation options: A review. Science of the Total Environment. 2019. Vol. 710. pp. 136–479.
3. Dong Y. B., Yue L., Lin H., Liu C. J. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss. 4. pp. 849–858.
4. Bahaloo-Horeh N., Mousavi S. M., Baniasadi M. Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. Journal of Cleaner Production. 2018. Vol. 197. pp. 1546–1557.
5. Kondratieva T. F., Bulaev A. G., Muravyov M. I. Microorganisms in biotechnologies of sulfide ore processing. Moscow: Nauka, 2015. 211 p.
6. Ocheretyana S. O. A brief review of the geographical distribution of mesophilic and hyperthermophilic acidophilic chemolithotrophic microorganisms used in metal biotechnology. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11 (Special Issue 19). pp. 159–171.
7. Ocheretyana S. O. A brief review of autotrophic and heterotrophic leaching of metals from ores, using acidophilic chemolithotrophic bacteria and other microorganisms with an indication of factors affecting bioleaching. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11 (Special Issue 19). pp. 172–179.
8. Blayda I. A., Vasyleva T. V., Semenov K. I. Impact of ultrasound on coal desulfurization and process of bioleaching of metals. Mikrobiologiya i Biotekhnologiya. 2017. No. 4. pp. 6–20.
9. Glembotskiy V. A., Sokolov M. A., Yakubovich I. A. et al. Ultrasound in mineral processing. Alma-Ata: Nauka, 1972. 229 p.
10. Groo E. A., Algebraistova N. K., Zhizhaev A. M., Romanchenko A. S., Makshanin A. V. Study of the influence of ultrasonic treatment for intensification of gold extraction processes from difficult-to-enrich raw materials. Gornyi Informatsionno-analiticheskiy Byulleten'. 2012. No. 2. pp. 89–96.
11. Swamy K. M., Sukla L. B., Narayana K. L., Kar R. N., Panchanadikar V. V. Use of ultrasound in microbial leaching of nickel from laterites. Ultrasonics Sonochemistry. 1995. Vol. 2. pp. 5–9.
12. Chiang Y., Santos R., van Audenaerde A., Monballiu A., van Gerven T., Meesschaert B. Chemoorganotrophic bioleaching of olivine for nickel recovery. Minerals. 2014. Vol. 4. pp. 553–564.
13. Sukla L. B., Swamy K. M., Narayana K. L., Kar R. N., Panchanadikar V. V. Bioleaching of Sukinda laterite using
ultrasonics. Hydrometallurgy. 1995. Vol. 37. pp. 387–391.
14. Piyasena P., Mohareb E., McKellar R. Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology. 2003. Vol. 87. pp. 207–216.
15. Hwang G., Han Y., Choi S. Q., Cho S., Kim H. Bacterial inactivation by ultrasonic waves: Role of ionic strength, humic acid, and temperature. Water, Air, & Soil Pollution. 2015. Vol. 226. DOI: 10.1007/s11270-015-2573-5
16. Vyas S., Ting Y.-P. A review of the application of ultrasound in bioleaching and insights from sonication in (bio) chemical processes. Resources. 2018. Vol. 7, Iss. 1. DOI: 10.3390/resources7010003

17. Thacker J. An approach to the mechanism of killing of cells in suspension by ultrasound. Biochimica et Biophysica Acta – General Subjects. 1973. Vol. 304. pp. 240–248.
18. Cameron M., McMaster L. D., Britz T. J. Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrasonics Sonochemistry. 2008. Vol. 15. pp. 960–964.
19. Drakopoulou S., Terzakis S., Fountoulakis M. S., Mantzavinos D., Manios T. Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrasonics Sonochemistry. 2009. Vol. 16. pp. 629–634.
20. Cameron M. Impact of low-frequency high-power ultrasound on spoilage and potentially pathogenic dairy microbes. Diss. for the degree of PhD in Food Science. South Africa, University of Stellenbosch, 2007. URL: https://scholar.sun.ac.za/bitstream/handle/10019.1/1163/cameron_impact_2007.pdf?sequence=3 (accessed: 20.02.2024).
21. Pitt W. G., Ross S. A. Ultrasound increases the rate of bacterial cell growth. Biotechnology Progress. 2003. Vol. 19. pp. 1038–1044.
22. Gao S., Lewis G. D., Ashokkumar M., Hemar Y. Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrasonics Sonochemistry. 2014. Vol. 21. pp. 446–453.
23. Koda S., Miyamoto M., Toma M., Matsuoka T., Maebayashi M. Inactivation of Escherichia coli and Streptococcus mutans by ultrasound at 500 kHz. Ultrasonics Sonochemistry. 2009. Vol. 16. pp. 655–659.
24. Kienko L. A., Samatova L. A., Voronova O. V. Effect of ultrasonic pulp treatment on flotation selectivity during
carbonate-fluorite ores beneficiation. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2013. No. 4. pp. 172–178.
25. Khmelev V. N., Shalunov A. V., Golykh R. N., Nesterov V. A., Dorovskikh R. S., Skiba E. A., Shavyrkina N. A. Influence of ultrasonic treatment on bacteria preservation during spray drying of fermented milk products. Tekhnika i Tekhnologiya Pishchevykh Proizvodstv. 2015. Vol. 39, No. 4. pp. 116–123.
26. Musikhin V. O., Kioresku A. V. Influence of a combined impact of microwave emission and ultrasound on a mixed culture of chemolithotrophic indigenous microorganisms of the Kamchatka nickel-bearing province. Vestnik Dalnevostochnogo Otdeleniya Rossiyskoy Akademii Nauk. 2018. No. 6. pp. 159–165.
27. Kioresku A. V. Repeated ultrasonic radiation effects on sulfur oxidation with mixed culture of acidophilic chemolithotrophic microorganisms. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2020. No. 12. pp. 25–32.
28. Bao S., Chen B., Zhang Y., Ren L., Xin C., Ding W., Yang S., Zhang W. A comprehensive review on the ultrasoundenhanced leaching recovery of valuable metals: Applications, mechanisms and prospects. Ultrasonics Sonochemistry. 2023. Vol. 98. DOI: 10.1016/j.ultsonch.2023.106525
29. Cultivation conditions: Leptospirillum sp., chromeextension. URL: https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium882.pdf (accessed: 10.06.2024).
30. Khaynasova T. S., Pashkevich R. I. Taxonomic analysis of the acidophilic chemolithotrophic microorganism culture taking part in bioleaching of sulphide ore of the Shanuch deposit. Mezhdunarodnyi Zhurnal Prikladnykh i Fundamentalnykh Issledovaniy. 2019. No. 10. pp. 28–33.
31. Wu X., Liu J., Zhu J. J. Sono-Fenton hybrid process on the inactivation of Microcystis aeruginosa: Extracellular and intracellular oxidation. Ultrasonics Sonochemistry. 2019. Vol. 53. pp. 68–76.
32. He Q., Liu D., Ashokkumar M., Ye X., Jin T. Z., Guo M. Antibacterial mechanism of ultrasound against Escherichia coli: Alterations in membrane microstructures and properties. Ultrasonics Sonochemistry. 2021. Vol. 73. DOI: 10.1016/j.ultsonch.2021.105509
33. Li J., Ahn J., Liu D., Chen S., Ye X., Ding T., Elkins C. A. Evaluation of ultrasound induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied and Environmental Microbiology. 2016. Vol. 82, Iss. 6. pp. 1828–1837.
34. Su J., Cavaco-Paulo A. Effect of ultrasound on protein functionality. Ultrasonics Sonochemistry. 2021. Vol. 76. DOI: 10.1016/j.ultsonch.2021.105653
35. Rojas E. R., Billings G., Odermatt P. D., Auer G. K., Zhu L., Miguel A., Chang F., Weibel D. B., Theriot J. A., Huang K. C. The outer membrane is an essential loadbearing element in Gram-negative bacteria. Nature. 2018. Vol. 559. pp. 617–621.
36. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews. 2003. Vol. 67, Iss. 4. pp. 593–656.
37. Demergasso C. Molecular characterization of microbial populations in a low-grade copper ore bioleaching test heap. Hydrometallurgy. 2005. Vol. 80. pp. 241–253.
38. Battaglia-Brunet F., D'Hugues P., Cabral T., Cezac P., Garcia J. L., Morin D. The mutual effect of mixed thiobacilli and leptospirilli populations on pyrite bioleaching. Minerals Engineering. 1998. Vol. 11. pp. 195–205.
39. Liu H., Yan Y., Wang W., Yu Y. Low intensity ultrasound stimulates biological activity of aerobic activated sludge. Frontiers of Environmental Science & Engineering. 2007. Vol. 1. pp. 67–72.
40. Pérez-Elvira S., Fdz-Polanco M., Plaza F. I., Garralón G., Fdz-Polanco F. Ultrasound pre-treatment for anaerobic digestion improvement. Water Science and Technology. 2009. Vol. 60. pp. 1525–1532.
41. Rogatkina E. Y, Mazina S. E., Rodionov A. N., Simenel A. A. Ferrocenes and porphyrins as Acidithiobacillus ferrooxidans growth activators under ultrasound irradiation. ChemistrySelect. 2023. Vol. 8, Iss. 45. DOI: 10.1002/slct.202302770

Language of full-text русский
Полный текст статьи Получить
Назад