ArticleName |
Processing of graphite ore from the Kureiskoye
deposit using thermal grinding technology |
ArticleAuthorData |
Siberian Federal University (Krasnoyarsk, Russia)
Gilmanshina T. R., Associate Professor, Candidate of Engineering Sciences, Associate Professor, gtr1977@mail.ru Dubinin P. S., Head of Laboratory, Candidate of Engineering Sciences, Associate Professor, Dubinin-2005@yandex.ru Samoilo A. S., Research Engineer, x_lab@rambler.ru
JSC «Krasnoyarskgrafit» (Krasnoyarsk, Russia)
Bashmakov A. A., Lab Engineer, sahsa01ba@gmail.com |
Abstract |
Separation of graphite particles from impurities while preserving the graphite’s flaky structure during processing is an essential challenge in graphite beneficiation. Thermal grinding of cryptocrystalline graphite, as proposed by A. D. Dmitriev, is a promising approach to address this challenge. This research was aimed to identify the optimal thermal grinding parameters for graphite that maximize the separation of cryptocrystalline graphite particles from impurity minerals without compromising the graphite’s flaky morphology. Graphite ore samples from the Kureiskoye deposit with a particle size fraction of –20+15 mm were used for this research. The optimal thermal grinding conditions selected for the work included maintaining the graphite temperature at 800–850 °C for 20 minutes, with an initial graphite moisture content of 5 %. Thermally ground graphite with a particle size of –0.2+0.16 mm, exhibiting a carbon content of 91–95 % and a crystallinity degree of 39.5 %, has been identified as the most promising fraction for new products. The isolated fraction of thermally ground graphite meets the specifications for graphite grade GT-2 under GOST 17022–81, with an ash content not exceeding 8.2 %, moisture content of 0.58 %, sulfur content of 0.06 %, iron content of 0.78 %, and no detectable volatile substances. The yield of the –0.2+0.16 mm fraction is approximately 10 %, with 20–30 % consisting of barren ore that can be effectively utilized as a filler in concrete mixes, while the remaining graphite can be used in metallurgical applications. Successful separation of the flaky component from cryptocrystalline graphite through thermal grinding significantly broadens the range of thermally ground graphite-based products, including the production of crucibles for melting metals and alloys. |
References |
1. State report «On the state and use of mineral resources of the Russian Federation in 2020». Moscow: VIMS, 2022. 572 p. 2. Vasumathi N., Sarjekar A., Chandrayan H. et al. A mini review on flotation techniques and reagents used in graphite beneficiation. International Journal of Chemical Engineering. 2023. Vol. 2023. DOI: 10.1155/2023/1007689 3. Graphite (natural). Mineral commodity summaries. U. S. Geological Survey. URL: https://pubs.usgs.gov/periodicals/mcs2022/mcs2022-graphite.pdf (accessed: 14.05.24). 4. Allah D. Jara, Amha Betemariam, Girma Woldetinsae, Jung Yong Kim. Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology. 2019. Vol. 29. pp. 671–689. 5. Tursunov A. S., Turdialiev U. M. Flotation processing of graphite ore using a local foamer. International Journal of Advanced Research in Science, Engineering and Technology. 2021. Vol. 8, Iss. 3. pp. 16920–16924. 6. Medkov M. A., Krysenko G. F., Epov D. G., Dmitrieva E. E., Sitnik P. V. Purification of flotation graphite concentrates using ammonium bifluoride and sulphate. Vestnik Dalnevostochnogo Otdeleniya Rossiyskoy Akademii Nauk. 2021. No. 5. pp. 144–151. 7. Wakamatsu T., Numatai Y. Flotation оf graphite. Minerals Engineering. 1991. Vоl. 4, No. 7–11. pp. 975–982. 8. Hоngqiang L. I., Leming О. U., Feng Q., Chang Z. Recovery mechanisms of sericite in microcrystalline graphite flotation. Physicochemical Problems of Mineral Processing. 2015. Vol. 51, Iss. 2. pp. 387–400. 9. Krysenko G. F., Epov D. G., Sitnik P. V., Molchanov V. P., Medkov M. A. Investigation of purification conditions of natural graphite with ammonium bifluoride. Khimicheskaya Tekhnologiya. 2020. Vol. 21, No. 1. pp. 3–9. 10. Orekhova N. N., Fadeeva N. V., Zinchenko A. A., Isaeva L. S. Investigation of acid dezolization process of graphitized metallurgical dust flotation concentrate. Vestnik Zabaykalskogo Gosudarstvennogo Universiteta. 2023. Vol. 29, No. 4. pp. 73–84. 11. Gilmanshina T. R., Lytkina S. I., Khudonogov S. A., Kritskiy D. Yu. Cryptocrystalline graphite properties study following treatment by different methods. Obogashchenie Rud. 2017. No. 1. pp. 15–18. 12. Gilmanshina T. R., Koroleva G. A., Dubova I. V. et al. Integrated technologies for desulfurization of cryptocrystalline graphite. ARPN Journal of Engineering and Applied Sciences. 2022. Vol. 17, Iss. 4. pp. 416–423. 13. Illarionov I. E., Gilmanshina T. R., Kovaleva A. A. Perspective methods of graphite quality improving. Materials Science Forum. 2019. Vol. 946. pp. 650–654. 14. Dmitriev A. V., Basharin I. A. Surface of destruction of graphite ore. Khimiya i Khimicheskaya Tekhnologiya. 2013. Vol. 56, Iss. 7. pp. 26–30. 15. Dmitriev A. V. Crushing of cryptocrystalline graphite during boiling of water in pores. Izvestiya Vysshikh Uchebnykh Zavedeniy. Seriya: Khimiya i Khimicheskaya Tekhnologiya. 2010. Vol. 53, No. 10. pp. 75–78. 16. Pat. 2357803 Russian Federation. 17. Yakimov I. S., Dubinin P. S., Piksina O. E. Regularized multireflex reference intensity ratio method for quantitative X-ray diffraction analysis of polycrystalline materials. Zavodskaya Laboratoriya. Diagnostika Materialov. 2010. No. 12. pp. 21–26. |