ArticleName |
Optimization of growth conditions for an autochthonous mixed culture of acidophilic bacteria isolated from oxidized ore of the Shanuch copper-nickel deposit |
Abstract |
This study investigates the influence of various nutrient media on the cultivation of an autochthonous mixed bacterial culture isolated from oxidized ore at the Shanuch copper-nickel deposit. PCR diagnostics revealed the presence of Acidithiobacillus thiooxidans, A. ferrooxidans, and Sulfobacillus thermosulfidooxidans. These acidophilic bacteria are critical for the bacterial-chemical treatment of sulfide ores and concentrates from copper-nickel deposits. The sample, which had been preserved for seven years under low-temperature conditions without reinoculation, was subjected to experiments aimed at restoring autochthonous bacterial activity and increasing cell counts to enhance bioleaching efficiency. The study has found that the most effective conditions for bacterial growth included the addition of Na2S2O3·5H2O and yeast extract to the nutrient medium, maintaining a temperature of 30 °C, stirring at 150 rpm, aeration, and controlling the pH at 2.02. Various inoculum-to-medium ratios (1 : 4, 1 : 8, and 1 : 10) were tested to optimize the production of bacterial suspensions. The 1 : 10 dilution provided the most favorable results, with cell growth ranging from 211 to 230 times the initial concentration across different media. Additionally, at this dilution ratio, no significant decrease in the number of planktonic bacterial forms was observed after reaching high cell density. |
References |
1. Ivanov V. I., Stepanov B. A. Application of microbiological methods in beneficiation and hydrometallurgy. Moscow, 1960. 125 p. 2. Sokolova G. A., Karavaiko G. I. Physiology and geochemical activity of thiobacteria. Moscow: Nauka, 1964. 336 p. 3. Bobadilla-Fazzini R., Poblete-Castro I. Biofilm formation is crucial for efficient copper bioleaching from bornite under mesophilic conditions: unveiling the lifestyle and catalytic role of sulfur-oxidizing bacteria. Extreme Microbiology. 2021. Vol. 12. DOI: 10.3389/fmicb.2021.761997 4. Bulaev A. G. New trends in biohydrometallurgy. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 3–1. pp. 56–87. 5. Ocheretyana S. O. Copper leaching from chalcopyrite in biohydrometallurgy: An overview. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 12 (Special issue 10). pp. 256–265. 6. Hosseini S. M., Vakilchap F., Baniasadi M., Mousavi S. M., Darban A. K., Farnaud S. Green recovery of cerium and strontium from gold mine tailings using an adapted acidophilic bacterium in one-step bioleaching approach. Journal of the Taiwan Institute of Chemical Engineers. 2022. Vol. 138. pp. 1–8. 7. Dong Y., Zan J., Lin H. Bioleaching of heavy metals from metal tailings utilizing bacteria and fungi: Mechanisms, strengthen measures, and development prospect. Journal of Environmental Management. 2023. Vol. 344. DOI: 10.1016/j.jenvman.2023.118511 8. Khainasova T. S. Bacterial-chemical leaching of sulphide cobalt-copper-nickel ore in laboratory conditions using inocula. Vestnik Dalnevostochnogo Otdeleniya RAN. 2014. No. 4. pp. 101–107. 9. Semerci N., Kunt B., Calli B. Phosphorus recovery from sewage sludge ash with bioleaching and electrodialysis. International Biodeterioration & Biodegradation. 2019. Vol. 144. DOI: 10.1016/j.ibiod.2019.104739 10. Kondratieva T. F., Bulaev A. G., Muravyev M. I. Microorganisms in biogeotechnologies of sulfide ore processing. Moscow: Nauka, 2015. 212 p. 11. Hedrich S., Schippers A. Distribution of acidophilic microorganisms in natural and man-made acidic environments. Current Issues in Molecular Biology. 2021. Vol. 40. pp. 25–48. 12. Vasyleva T. V., Blayda I. A., Ivanytsa V. O. The main groups of microorganisms involved in the biohydrometallurgical process. Problemy Ekolohichnoy Biotekhnologii. 2013. No. 1. pp. 5–29. 13. Khomchenkova A. S. The heavy metals and leaching microorganisms (a review). Gornyi Informatsionno-analiticheskiy Byulleten'. 2017. No. 12 (Special issue 32 «Kamchatka-5»). pp. 228–336. 14. Khainasova T. S. Ecology of acidophilic chemolithotrophic microorganisms perspective for bioleaching. Gornyi Informatsionno-analiticheskiy Byulleten'. 2018. No. 12 (Special issue 57 «Kamchatka-7»). pp. 198–207. 15. Khaynasova T. S., Pashkevich R. I. Taxonomic analysis of the acidophilic chemolithotrophic microorganism culture taking part in bioleaching of sulphide ore of the Shanuch deposit. Mezhdunarodnyi Zhurnal Prikladnykh i Fundamentalnykh Issledovaniy. 2019. No. 10. pp. 28–33. 16. Bosecker K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews. 1997. Vol. 20, Iss. 3–4. pp. 591–604. 17. Xia J., Yang Y., He H., Liang C., Zhao X., Zheng L., Ma C., Zhao Y., Nie Z., Qiu G. Investigation of the sulfur speciation during chalcopyrite leaching by moderate the thermophile Sulfobacillus thermosulfidooxydans. International Journal of Mineral Processing. 2010. Vol. 94. pp. 52–57. 18. Ocheretyana S. O. Effect of pH and aeration on a mixed culture of chemolithotrophic acidophilic bacteria. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 12 (Special issue 10). pp. 246–255. 19. Hubau A., Guezennec A. G., Joulian C., Falagán C., Dew D., Hudson-Edwards K. A. Bioleaching to reprocess sulfidic polymetallic primary mining residues: Determination of metal leaching mechanisms. Hydrometallurgy. 2020. Vol. 197. DOI: 10.1016/j.hydromet.2020.105484 20. Karavaiko G. I., Rossi J., Agate A., Grudev S., Avakyan Z. A. Biogeotechnology of metals. Moscow: Center for International Projects of the State Committee on Science and Technology, 1989. 375 p. 21. Tan S. N., Chen M. Early stage adsorption behaviour of Acidithiobacillus ferrooxidans on minerals I: An experimental approach. Hydrometallurgy. 2012. Vol. 119–120. pp. 87–94.
22. Yagohobi Moghaddam M., Ranjbar M., Manafi Z., Schaffie M., Jahani M. Modeling and optimizing bacterial leaching process parameters to increase copper extraction from a low-grade ore. Minerals Engineering. 2012. Vol. 32. pp. 5–7. 23. Yang Y., Diao M., Liu K., Qian L., Nguyen A. V., Qiu G. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidohile Acidiphilium sp. Hydrometallurgy. 2013. Vol. 131–132. pp. 93–98. 24. D’Hugues P., Joulian C., Spolaore P., Michel C., Garrido F., Morin D. Continuous bioleaching of a pyrite concentrate in stirred reactors: Population dynamics and exopolysaccharide production vs. bioleaching performance. Hydrometallurgy. 2008. Vol. 94. pp. 34–41. 25. Eisapour M., Keshtkar A., Moosavian M. A., Rashidi A. Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design. Annals of Nuclear Energy. 2013. Vol. 54. pp. 245–250. 26. Gericke M., Muller H. H., van Staden P. J., Pinches A. Development of a tank bioleaching process for the treatment of complex Cu-polymetallic concentrates. Hydrometallurgy. 2008. Vol. 94. pp. 23–28. 27. Elkina Yu. A., Melamud V. S., Bulaev A. G. Effect of organic nutrients on bioleaching of low-grade copper concentrate at different temperatures. IOP Conference Series Earth and Environmental Science. 2021. Vol. 677, Iss. 4. DOI: 10.1088/1755-1315/677/4/042076 28. Rogatykh S. V., Dokshukina A. A., Levenets O. O., Muradov S. V., Kofiadi I. A. Evaluation of quantitative and qualitative composition of cultivated acidophilic microorganisms by real-time PCR and clone library analysis. Mikrobiologiya. 2013. Vol. 82, No. 2. pp. 212–217. |