Journals →  Gornyi Zhurnal →  2024 →  #10 →  Back

GEOLOGY, SEARCH AND EXPLORATION OF MINERALS
ArticleName Geodynamic zoning and structural forms within sedimentary mantle of the Eastern Arctic Seas of Russia
DOI 10.17580/gzh.2024.10.04
ArticleAuthor Lavrenova E. A., Kerimov V. Yu., Gorbunov A. A.
ArticleAuthorData

Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia1 ; ASAP Service LLC, Gelendzhik, Russia2
E. A. Lavrenova, Associate Professor1, CEO2, Candidate of Geological and Mineralogical Sciences

 

Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia
V. Yu. Kerimov, Head of Department, Doctor of Geological and Mineralogical Sciences, Professor, vagif.kerimov@mail.ru
A. A. Gorbunov, Senior Researcher

Abstract

The shelf and suboceanic structures of the modern geology in the Arctic Ocean are the result of a single initiation and development process. Based on the integrated interpretation of retrospective and recent geological and geophysical data, the geodynamic conditions of the sedimentary mantle formation on the shelves of the Eastern Arctic Seas are studied. As follows from the research, the most part of the East Siberian and Laptev Seas features stable geodynamic setttings, except for the northern areas involved in the post-rift subsidence at the late stages of the sedimentary mantle formation. The geodynamic zoning identified and characterized sedimentary basins differing by the genesis of accommodation space and formed under both compression (flexures in the periphery and inside folding zones) and tension (trans-tension, rift and passive margins, intra-plate). The assumption of similar geological processes to run in the same geodynamic settings makes it possible the presence or absence of hydrocarbon components in a sedimentary basin and the oil content at the early stages of investigation of sedimentary basins. The phased technology of paleotectonic and geodynamic analyses applied within this research includes: the examination of modern structural plans and distribution of sedimentary strata between the main surfaces of inconsistencies, vertical movements and rates of sedimentation; delineation of depocenters of sedimentation and stable downwarping zones. As a result of the implemented geodynamic analysis, certain types of structural forms are identified in the sedimentary mantle of the Eastern Arctic Seas (intermountain and submontane troughs, intra-continental, shear and tension at the boundaries of plates, compression at the boundary of plates, rift tension, superposed passive margins), and the forecast of their composition is made.

keywords Northern Arctic Ocean, geodynamic zoning, Eastern Arctic, shearing zone, rift zone, continental crust
References

1. Wang K., Shi X., Dong J., Bosin A. A., Astakhov A. S. et al. Sediment provenance of the East Siberian Arctic Shelf and evidence of Holocene climate-driven fluvial events in the Indigirka River based on detrital mineral analysis. Palaeogeography, Palaeoclimatology, Palaeoecology. 2024. Vol. 638. ID 112042.
2. Wang R., Polyak L., Zhang W., Yu X., Ye L. et al. Glacial–interglacial sedimentation and paleocirculation at the Northwind Ridge, western Arctic Ocean. Quaternary Science Reviews. 2021. Vol. 258. ID 106882.
3. Rudels B. The Physical Oceanography of the Arctic Mediterranean Sea. Exploration, Observations, Interpretations. Amsterdam : Elsevier, 2022. 520 p.
4. Franke D., Hinz K., Oncken O. The Laptev Sea Rift. Marine and Petroleum Geology. 2001. Vol. 18, Iss. 10. pp. 1083–1127.
5. Drachev S. S. Laptev Sea Rifted Continental Margin: Modern Knowledge and Unsolved Questions. Polarforschung. 1998. No. 68. pp. 41–50.
6. Drachev S. S. Tectonic setting, structure and petroleum geology of the Siberian Arctic 852 offshore sedimentary basins. Arctic Petroleum Geology. Geological Society Memoir No. 35. London : Geological Society, 2011. Vol. 35. pp. 369–394.
7. Doré A. G., Lundin E. R., Gibbons A., Sømme T. O., Tørudbakken B. O. Transform margins of the Arctic: A synthesis and re-evaluation. Transform Margins: Development, Controls and Petroleum Systems. Special Publications. London : Geological Society, 2016. Vol. 431. pp. 63–94.
8. Kosko M. K., Sobolev N. N., Korago E. A., Proskurnin V. F., Stolbov N. M. Geology of New Siberian Islands—A basis for interpretation of geophysical data on the Eastern Arctic shelf of Russia. Neftegasovaya geologiya. Teoriya i praktika. 2013. Vol. 8, No. 2.
9. Pavlovskaya E. A., Khudoley A. K., Rukh I. B., Moskalenko A. N., Giyon M. et al. Tectonic evolution of the northern Verkhoyanks fold-and-thrust belt from the analysis of paleostresses and U–Pb dating of calcite. Tectonics and Geodynamics of the Earth’s Crust and Mantle : Fundamental Problems–2022. LIII Tectonic Conference Proceedings. Moscow : GEOS, 2022. Vol. 2. pp. 71–75.
10. Prokopiev A., Khudoley A., Egorov A., Gertseva M., Afanasieva E. et al. Late Cretaceous–Early Cenozoic indicators of continental extension on the Laptev Sea shore (North Verkhoyansk). 3P Arctic: The Polar Petroleum Potential Conference. Stavanger, 2013. p. 170.
11. Prokopiev A. V., Toro Kh., Smelov A. P., Miller E. L., Vuden J. et al. The Ust-Lena metamorphic complex of rocks (north east of Asia): The first U-Pb SHRIMP geochronology data. Otechestvennaya geologiya. 2007. No. 5. pp. 26–29.
12. Vasiliev D. A., Prokopiev A. V., Khudoley A. K, Ershova V. B., Kazakova G. G. et al. Thermochronology of the northern part of the Verkhoyansk fold-and-thrust belt according to apatite fission–track age. Prirodnye resursy Arktiki i Subarktiki. 2019. Vol. 24, No. 4. pp. 49–66.
13. Frolov S. V., Korobova N. I., Bakay E. A., Kurdina N. S. Hydrocarbon systems and oil and gas potential prospects of the Anabar–Lena trough. Georesursy. 2017. Special issue. Part 2. pp. 173–185.
14. Nikishin A. M., Malyshev N. A., Petrov E. I. The main problems of the structure and history of the geological development of the Arctic Ocean. Bulletin of the Russian Academy of Sciences. 2020. Vol. 90, No. 3. pp. 345–356.
15. Moran K., Backman J., Brinkhuis H., Clemens S. C., Cronin T. et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature. 2006. Vol. 441. pp. 601–605.
16. Jokat W., Uenzelmann-Neben G., Kristoffersen Y., Rasmussen T. M. Lomonosov Ridge—A double-sided continental margin. Geology. 1992. Vol. 20, No. 10. pp. 887–890.
17. Earle S., Panchuk K. Physical Geology. 2nd ed. Victoria : BCcampus, 2019. 829 p.
18. Grantz A., Eittreim S., Dinter D. A. Geology and tectonic development of the continental marg in north of Alaska. Tectonophysics. 1979. Vol. 59, Iss. 1-4. pp. 263–291.
19. Mascle J., Lohmann G. P, Clift P. D. et al. Explanatory reports. Shipboard Scientific Party. Proceedings of the Ocean Drilling Program : Initial Reports. Cote d’Ivoire, 1996. Vol. 159. pp. 17–46.
20. Nemčok M., Henk A., Allen R., Sikora P. J., Stuart C. Continental break-up along strikeslip fault zones; observations from the Equatorial Atlantic. Conjugate Divergent Margins : Geological Society Special Publication 369. London : Geological Society, 2013. pp. 537–556.
21. Pravikova N. V., Korotaev M. V., Startseva K. F., Belyaev M. O., Nikishin A. M. The evolution of the pegtymel inverted rift based on the results of kinematic reconstruction (Chukchi Sea). Moscow University Geology Bulletin. 2023. Vol. 78, No. 4. pp. 472–479.
22. Nikishin A. M., Petrov E. I., Malyshev N. A., Ershova V. P. Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: Link between geological history and geodynamics. Geodynamics & Tectonophysics. 2017. Vol. 8, Iss. 1. pp. 11–43.
23. Zavarzina G. A., Shapabaeva D. S., Zakharova O. A. Newly acquired data on the geologic structure and hydrocarbon potential in the eastern part of the East Siberian Sea Shelf. Russian Geology and Geophysics. 2023. Vol. 64, No. 7. pp. 1018–1032.
24. Sømme T. O., Doré A. G., Lundin E. R., Tørudbakken B. O. Triassic–Paleogene paleogeography of the Arctic: Implications for sediment routing and basin fill. AAPG Bulletin. 2018. Vol. 102, No. 12. pp. 2481–2517.
25. Allen P. A., Allen J. R. Basin Analysis: Principles and Application to Petroleum Play Assessment. 3rd ed. Chichester : John Wiley & Sons, 2013. 630 p.
26. Kerimov V. Yu., Lavrenova E. A., Mustaev R. N., Mamedov R. A. Structure and evolution of hydrocarbon systems of the marginal seas of the Arctic ocean (Eastern Arctic). Arktika: Ekologia i Ekonomika. 2023. Vol. 13, No. 4. pp. 488–500.
27. Kerimov V., Lavrenova E., Mamedov R. Prospects for the development of hydrocarbon resources in the water area of the East Arctic Seas. International Conference on SMART Automatics and Energy : AIP Conference Proceedings. New York : AIP Publishing, 2023. Vol. 2910. ID 020094.
28. Lavrenova E. A., Gorbunov A. A., Kerimov V. Yu., Shatyrov A. K. SVISION—A new reality in delination of stratigraphic traps. Eurasian Mining. 2023. No. 2. pp. 14–17.
29. Senin B. V., Kerimov V. Yu., Mustaev R. N., Mamedov R. A. Morphology and evolution of Eastern Arctic structure and geodynamics. Gornyi Zhurnal. 2023. No. 12. pp. 22–28.
30. Senin B. V., Kerimov V. Yu., Leonchik M. I., Mustaev R. N., Mamedov R. A. Structural–geodynamic systems of the Eastern Arctic Region. Russian Journal of Pacific Geology. 2024. Vol. 18, No. 2. pp. 115–129.
31. Kerimov V. Yu., Lavrenova E. A., Shcherbina Yu. V., Mamedov R. A. Structural-tectonic model of the basement and sedimentary cover of East Arctic water areas. Izvestiya vuzov. Geologiya i razvedka. 2020. Vol. 63, No. 1. pp. 19–29.
32. Kerimov V. Yu., Shcherbina Yu. V., Mamedov R. A. Generation and accumulation hydrocarbon systems in the Eastern Arctic Waters. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 666, No. 5. ID 052090.

Language of full-text russian
Full content Buy
Back