Journals →  Chernye Metally →  2024 →  #11 →  Back

105th anniversary of the Dept. of Metal Forming of the National University of Science and Technology MISIS
ArticleName Technology and stand for radial-shear rolling of special design for preliminary reduction of continuously cast billets in conditions of Tube Rolling Mill 160 of JSC Pervouralsk New Pipe Plant at increased roll feed angles
DOI 10.17580/chm.2024.11.08
ArticleAuthor A. S. Aleshchenko, R. V. Iskhakov, S. P. Galkin, Yu. V. Gamin, M. V. Kadach
ArticleAuthorData

National University of Science and Technology MISIS, Moscow, Russia

A. S. Aleshchenko, Cand. Eng., Associate Prof., Head of the Dept. of Metal Forming, e-mail: aleschenko.as@misis.ru
S. P. Galkin, Dr. Eng., Prof., Dept. of Metal Forming, e-mail: glk-omd@yandex.ru
Yu. V. Gamin, Cand. Eng., Associate Prof., Dept. of Metal Forming, e-mail: y.gamin@mail.ru
M. V. Kadach, Head of Laboratory, e-mail: kadach.mv@misis.ru

 

National University of Science and Technology MISIS, Moscow, Russia1 ; JSC Pervouralsk New Pipe Plant, Pervouralsk, Russia2

R. V. Iskhakov, Postgraduate Student, Dept. of Metal Forming1, Leading Engineer-Technologist2, e-mail: ruslan.iskhakov@tmk-group.com

Abstract

A set of research, development, design and implementation works was carried out to create a technology and a specially designed radial-shear rolling (RSR) stand for preliminary reduction of continuously cast billets in the conditions of the operating Tube Rolling Mill 160 of JSC Pervouralsk New Pipe Plant. Pre-project research work was carried out, during which a pilot batch of billets with a diameter of 150–156 mm from 12Kh1MF, 18KhMFB and 18Kh3MFB steels was rolled on the RSR stand to a diameter of 90 and 105 mm. Comparative analysis of the microstructure of the original continuously cast billets (CCB) and bars after hot deformation showed that RSR allows for intensive refinement of the CCB structure and, at drawing ratios of 2.0–3.0, ensures high-quality processing of the cast structure by 70–90 %. The design of the stand was developed in terms of permissible forces, strength, and the possibility of installation in the line of the existing Tube Rolling Mill 160. The use of a specialized RSR stand at feed angles of 18 degrees for preliminary deformation of CCB made it possible to increase the reduction to 45 %, the drawing ratio to 3.0–3.3, and to roll CCB with a diameter of 156 mm from alloyed chromium-containing steels to a diameter of 90–95 mm in one pass.

keywords Кadial-shear rolling, continuously cast billet, feed angle, preliminary reduction, chromium-containing steel grades, drawing ratio.
References

1. Potapov I. N., Polukhin P. I. Screw rolling technology. Moscow: Metallurgiya, 1990. 334 p.
2. Galkin S. P., Kharitonov E. A., Romanenko V. P. Screw rolling for pipe-blank production. Steel in Translation. 2009. Vol. 39. No. 8. pp. 700–703.
3. Bogatov A. A., Pavlov D. A., Nukhov D. Sh. Screw rolling of continuously cast billets from structural steel grades: tutorial. Yekaterinburg : UrFU, 2017. 164 p.
4. Ovchinnikov D. V., Bogatov A. A., Erpalov M. V. Development and put into practice production technology for tubing pipes from continuously cast billet. Chernye Metally. 2012. No. 3. pp. 18–21.
5. Naizabekov A. B., Lezhnev S. N., Arbuz A. S. The effect of radial-shear rolling on the microstructure and mechanical properties of technical titanium. Solid State Phenomena. 2020. Vol. 299. pp. 565–570. DOI: 10.4028/www.scientific.net/ssp.299.565
6. Grabovetskaya G. P., Mishin I. P., Naidenkin E. V., Zabudchenko O. V. et al. Mechanical properties and creep of VT22 alloy after radial-shear rolling and subsequent aging. AIP Conf. Proc. 2022. April 22. Vol. 2509. 020078. DOI: 10.1063/5.0084902
7. Stefanik A., Morel A., Mróz S., Szota P. Theoretical and experimental analysis of aluminium bars rolling process in three-high skew rolling mill. Archives of Metallurgy and Materials. 2015. Vol. 60, Iss. 2. pp. 809–813. DOI: 10.1515/amm-2015-0211
8. Magzhanov M. K., Naizabekov A. B., Kavalek A. A., Panin E. A. et al. Study of changes in the structure of zirconium alloy E125 after deformation by radial-shear rolling. Lityo i metallurgiya. 2023. No. 2. pp. 111–118.
9. Andreev V. A., Yusupov V. S., Perkas M. M. Modern technologies of forming titanium nickelide based alloys with shape memory effect. Advanced materials and technologies: monograph: in 2 volumes. Vitebsk : VGTU, 2019. Vol. 1. pp. 115–128.
10. Lezhnev S. N., Naizabekov A. B.,Volokitina I. E., Panin E. A. et al. Radial-shear rolling as a new technological solution for recycling bar scrap of ferrous metals. Complex Use of Mineral Resources. 2021. Vol. 316, No. 1. pp. 46–52. DOI: 10.31643/2021/6445.06
11. Chernyshev Yu. M., Isaykin A. N., Chechulin Yu. B., Khaldin D. V. et al. Mastering the reduction of continuously cast billets on the three-roll Assel mill of Pervouralsk New Pipe Plant. Stal. 2016. No. 5. pp. 35–40.
12. Frolochkin V. V., Fadeev M. M., Kuznetsov V. Yu., Romantsev B. A. et al. Mastering the rolling of a continuously cast billet on the Tube Rolling Mill 50-200. Stal. 2002. No. 7. pp. 56–57.
13. Frolochkin V. V., Kuznetsov V. Yu., Marchenko K. L., Romantsev B. A. et al. Sleeve production method. Patent RF, No. 2245751. Applied: 08.10.2003. Published: 10.02.2005.
14. Balakin V. F., Stepanenko A. N., Garmashov D. Yu. et al. Mastering the re-rolling of solid billets to smaller diameters and production of pipes thereof on the Tube Rolling Mill 50-200 of PJSC INTERPIPE NTRP. Trubnoe proizvodstvo. 2015. No. 6. pp. 44–48.
15. Korsakov A. A., Mikhalkin D. V., Zavartsev N. A., Krasikov A. V. et al. Development of a mathematical model and computer program for calculating the energy-power parameters of the process of rolling continuously cast billets on three-roll screw rolling mills. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2021. Vol. 77. No. 1. pp. 55–62. DOI: 10.32339/0135-5910-2021-1-55-62
16. Romanenko V. P., Fomin A. V., Sevastianov A. A. et al. Effect of screw piercing on the structure and mechanical properties of a continuously cast blank made of wheel steel. Metallurgist. 2024. Vol. 67. pp. 1837–1844. DOI: 10.1007/s11015-024-01681-x
17. Romanenko V. P., Fomin A. V., Nikulin A. N. Effect of preliminary deformation of the cast semifinished product on the service properties of wheel steel. Metallurgist. 2013. Vol. 57, Iss. 3-4. pp. 303–309.
18. Romanenko V. P., Fomin A. V., Begnarskii V. V. et al. Deformation action of screw rolling on a cast wheel billet. Metallurgist. 2013. Vol. 56. pp. 753–759. DOI: 10.1007/s11015-013-9653-9
19. Yin Y., Li S., Kang Y., Wang P. et al. Influence of technological parameters on lamination defect of large diameter heavy wall P92 seamless steel pipe elongated by 2-roll rotary rolling process. Material Science and Technology. 2014. Vol. 22. pp. 123–128.
20. Zvonarev D. Yu., Noskova M. N., Akhmerov D. A., Pavlova M. A. Assessment of the strength of the Assel mill under increased loads. Chernye Metally. 2023. No. 3. pp. 41–45.
21. Galkin S. P., Aleschenko A. S., Romantsev B. A., Gamin Yu. V. et al. Effect of preliminary deformation of continuously cast billets by radial-shear rolling on the structure and properties of hot-rolled chromium-containing steel pipes. Metallurgist. 2021. Vol. 65. pp. 185–195. DOI: 10.1007/s11015-021-01147-4
22. Cao X., Wang B., Zhou J., Shen J. Application of unified constitutive model of 34CrNiMo6 alloy steel and microstructure simulation for flexible skew rolling hollow shafts. Journal of Manufacturing Processes. 2022. Vol. 76. pp. 598–610. DOI: 10.1016/j.jmapro.2022.02.021
23. Murillo-Marrodán A., García E., Barco J., Cortés F. Application of an incremental constitutive model for the FE analysis of material dynamic restoration in the rotary tube piercing process. Materials. 2020. Vol. 13. 4289. DOI: 10.3390/ma13194289
24. Zhang Z., Liu D., Yang Y., Wang J. et al. Microstructure evolution of nickel based superalloy with periodic thermal parameters during rotary tube piercing process. The International Journal of Advanced Manufacturing Technology. 2019. Vol. 104. pp. 3991–4006. DOI: 10.1007/s00170-019-04126-x
25. Vydrin A. V., Кrasikov A. V., Zhukov A. S., Zvonarev D. Y. et al. Forecasting procedure for strength and ductile properties of alloy steel pipes in process of manufacturing and operation. Procedia Structural Integrity. 2022. Vol. 40. pp. 450–454.
26. GOST R 53366–2009 (ISO 11960:2004). Petroleum and natural gas industries. Steel pipes for use as casing or tubing for wells. Introduced: 01.03.2010.
27. Salganik V. M., Sychev O. N. Modeling and development of an effective technology for controlled rolling of pipe steels with a given set of mechanical characteristics. Metallurg. 2009. No. 5. pp. 46–49.
28. Ivashko V. V., Kirilenko O. M., Vegera I. I., Semenov D. A. Study of the influence of heat treatment modes on the structure and mechanical properties of hot-rolled pipes made of 32G2 steel. Lityo i metallurgiya. 2011. No. 4. pp. 108–114.
29. Galkin S. P., Gamin Yu. V., Aleshchenko A. S., Romantsev B. A. Modern development of elements of theory, technology and mini-mills of radial-shear rolling. Chernye Metally. 2021. No. 12. pp. 51–58.
30. Galkin S. P., Fadeev V. A., Gusak A. Yu. Comparative analysis of the geometry of mini-mills for radial-shear (screw) rolling. Proizvodstvo prokata. 2015. No. 12. pp. 19–25.
31. Troitsky D. V., Gamin Yu. V., Galkin S. P., Budnikov A. S. Parametric model of a three-roll unit of a mini-mill for radial-shear rolling. Izvestiya vuzov. Chernaya Metallurgiya. 2023. Vol. 66. No. 3. pp. 376–386. DOI: 10.17073/0368-0797-2023-3-376-386
32. Galkin S. P., Kin T. Yu., Gamin Yu. V., Aleshchenko A. S. et al. Review of scientific-applied research and industrial application of radial-shear rolling technology. CIS Iron and Steel Review. 2024. Vol. 27. pp. 35–47.
33. Iskhakov R., Gamin Y., Kadach M., Budnikov A. Development of radial-shear rolling mill special stands for continuous cast billets deformation. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 966. 012074. DOI: 10.1088/1757-899X/966/1/012074

Language of full-text russian
Full content Buy
Back