Название |
Description of the laser hardening of technological tools for metal forming |
Информация об авторе |
National University of Science and Technology MISIS, Moscow, Russia
N. A. Chichenev, Dr. Eng., Prof., Dept. of Engineering of Technological Equipment, e-mail: chich38@mail.ru A. O. Karfidov, Head of the Dept. of Engineering of Technological Equipment, e-mail: a.korf@mail.ru M. V. Vasilyev, Senior Lecturer, Dept. of Engineering of Technological Equipment, e-mail: michailvasiliev91@gmail.com O. N. Chicheneva, Cand. Eng., Associate Prof., Dept. of Computer-Aided Design and Engineering, e-mail: ch-grafika@mail.ru |
Реферат |
The application of laser hardening of steels during heating without melting the surface is considered to improve the efficiency of the metal forming tool, including rolls of cold rolling mills and cold deformation dies. To describe the processes of laser hardening, it is proposed to use dimensionless parameters that have a clear physical meaning and take into account the technological parameters of laser heat treatment and the thermophysical characteristics of the processed metal: 1) the relative power of the laser radiation, equal to the ratio of the power of the laser radiation to the power of the heat flux, which can be diverted from the surface due to thermal conductivity deep into the metal without melting it; 2) the relative speed of movement of the laser beam, equal to the ratio of the speed of movement of the laser beam to the speed of propagation of the temperature front in this material; 3) the relative depth of the hardened layer, equal to the ratio of the depth of the hardened layer to the maximum possible theoretical value, which is achieved when the temperature on the surface of the metal reaches its melting temperature. Experimental data on laser processing of structural alloy steel of type 40KhN2MA are presented, on the basis of which graphs are constructed and empirical dependences of the relative depth of the quenching zone on the relative power of laser radiation and the relative speed of the laser beam are obtained. It is shown that the formulas obtained and the graphs given can also be applied to other grades of steels, since they use relative (dimensionless, generalized) values of laser radiation power and the speed of movement of the laser beam. |
Библиографический список |
1. Polukhin V. P. et al. Reliability and durability of cold rolling rolls. Moscow : Metallurgiya, 1976. 448 p. 2. Vasiliev D. I., Tylkin M. A., Teterin G. P. Fundamentals of design of a deforming tool. Moscow : Vysshaya shkola, 1980. 223 p. 3. Jiang Z. Y., Wei D., Tieu A. K. Analysis of cold rolling of ultra-thin strip. Journal of Materials Processing Technology. 2009. Vol. 209, Iss. 9. pp. 4584–4589. 4. Rumyantsev M. I. Some approaches to improve the resource efficiency of production of flat rolled steel. CIS Iron and Steel Review. 2016. Vol. 12. pp. 32–36. 5. Konstantinov I. L., Sidelnikov S. B. Forging and stamping production: textbook. Moscow : NITs INFRA-M, 2021. 464 p. 6. Nefedov A. V., Svichkar V. V., Chicheneva O. N. Re-engineering of equipment to feed the melting furnace with aluminum charge. Lecture Notes in Mechanical Engineering. 2021. pp. 1198–1204. DOI: 10.1007/978-3-030-54817-9_139 7. Wendt P. Innovations of LOI Thermoprocess in the field of heating, cooling and heat treatment. Chernye Metally. 2016. No. 5. pp. 54–57. 8. Gorbatyuk S. M., Morozova I. G., Naumova M. G. Development of a working model of the process of reindustrialization production of stamp steels heat treatment. Izvestiya vuzov. Chernaya metallurgiya. 2017. Vol. 60. No. 5. pp. 410–415. 9. Efremov D. B., Stepanov V. M., Chicheneva O. N. Modernization of the mechanism for quick reverse motion of rolls of a DUO rolling stand of the Ural Steel`s 2800 mill. Stal. 2020. No. 8. pp. 44–47. 10. Bardovsky A. D., Gerasimova A. A., Bibikov P. Ya. Principles of improvement of milling equipment. Gornyi Zhurnal. 2020. No. 3. pp. 56–59. 11. Nefedov A. V., Kitanov A. A., Chichenev N. A. Reengineering of a roller hardening machine of the Ural Steel`s sheet rolling shop. Chernye Metally. 2022. No. 3. pp. 22–26. 12. Stenico A., Tami W. Experience of improvement of direct quenching technology at the plant in the USA. Chernye Metally. 2018. No. 12. pp. 41–43. 13. Khorram A., Davoodi Jamaloei A., Jafari A., Moradi M. Nd:YAG laser surface hardening of AISI 431 stainless steel; mechanical and metallurgical investigation. Optics and Laser Technology. 2019. Vol. 119. 105617. DOI: 10.1016/j.optlastec.2019.105617 14. Moradi M., Ghorbani D., Moghadam M. K., Kazazi M. et al. Nd:YAG laser hardening of AISI 410 stainless steel: Microstructural evaluation, mechanical properties, and corrosion behavior. Journal of Alloys and Compounds. 2019. Vol. 795. pp. 213–222. DOI: 10.1016/j.jallcom.2019.05.016 15. Moradi M., Arabi H., Karami Moghadam M., Benyounis K. Y. Enhancement of surface hardness and metallurgical properties of AISI 410 by laser hardening process; diode and Nd:YAG lasers. Optik. 2019. Vol. 188. pp. 277–286. DOI: 10.1016/j.ijleo.2019.05.057 16. Moradi M., Arabi H., Jamshidi Nasab S., Benyounis K. Y. A comparative study of laser surface hardening of AISI 410 and 420 martensitic stainless steels by using diode laser. Optics and Laser Technology. 2019. Vol. 111. pp. 347–357. DOI: 10.1016/j.optlastec.2018.10.013 17. Grigoryants A. G., Shiganov I. N., Misyurov A. I. Technological processes of laser processing: manual. Moscow : Izdatelstvo MGTU imeni N. E. Baumana, 2006. 663 p. 18. Laser technologies of materials processing: modern issues of fundamental research and applied developments. Edited by V. Ya. Panchenko. Moscow : FIZMATLIT, 2009. 664 p. 19. Metal science and heat treatment of steel and iron: handbook: in 3 volumes. Edited by A. G. Rakhshtadt, L. M. Kaputkina, S. D. Prokoshkin. Vol. 3: Heat and thermomechanical treatment of steel and iron. Moscow : Intermet Inzhiniring, 2007. 920 p. 20. Sedov L. I. Methods of similarity and dimensions in mechanics. Moscow : Nauka, 1965. 388 p. 21. Langhaar H. L. Dimensional analysis and theory of models. New York : John Wiley & Sons. Inc., 1967. 166 p. 22. Chizhikov Yu. M. Similarity theory and modeling of metal forming processes. Moscow: Metallurgiya, 1970. 296 p. 23. Chichenev N. A., Gorbatyuk S. M., Morozova I. G., Naumova M. G. Using the similarity theory to describe laser hardening processes. CIS Iron and Steel Review. 2020. Vol. 19. pp. 44–47. 24. GOST 4543–71. Structural alloy steel bars. Specifications. Introduced: 01.01.1973. 25. Steel and alloy grade book. Characteristics of 40KhN2МА material. Available at: http://splavkharkov.com/mat_start.php?name_id=191 (accessed: 05.10.2023). 26. European Metallurgical Company. Characteristics of low-alloy steel AISI 4340. Available at: https://emk24.ru/wiki/astm_steels/stal_aisi_4340_7211143/ (accessed: 05.10.2023). 27. Vedenov A. A., Gladush G. G. Physical processes in laser processing of materials. Moscow : Energoatomizdat, 1985. 207 p. |