Journals →  Gornyi Zhurnal →  2024 →  #11 →  Back

FROM THE OPERATIONAL EXPERIENCE OF THE MINING COMPANIES AND THE ORGANIZATIONS
UFA STATE PETROLEUM TECHNOLOGICAL UNIVERSITY
ArticleName Effect of boron content of limestone on porosity coefficient measurements by neutron well logging using steadystate source
DOI 10.17580/gzh.2024.11.01
ArticleAuthor Bogdan V. A., Sultanov Sh. Kh., Kotenev Yu. A., Chudinova D. Yu.
ArticleAuthorData

Ufa State Petroleum Technological University, Ufa, Russia

V. A. Bogdan, Research Engineer, mhen839@yandex.ru
Sh. Kh. Sultanov, Doctor of Engineering Sciences, Professor
Yu. A. Kotenev, Head of Department, Doctor of Engineering Sciences, Professor
D. Yu. Chudinova, Head of Laboratory, Candidate of Geological and Mineralogical Sciences, Associate Professor

Abstract

The article discusses causes of the porosity coefficient overestimation in neutron well logging using steady-state source in comparison with laboratory analyzes of cores from the boron-bearing Lower Permian deposits. The results of mathematical modeling of the measured porosity coefficients from neutron well logging using steady-state sources in limestones and dolomites with different porosity and boron content are presented. Based on the mathematical modeling, the charts of the effect exerted by the boron concentration on the measured values of the porosity coefficient are plotted. A procedure is proposed for quantifying the boron concentration in carbonate rocks based on different effect of boron on the porosity coefficient measured by individual probes of the two-probe neutronneutron method for thermal neutrons and their ratio, as well as by the neural gamma-ray logging method. The values of the porosity coefficient measured by the long-range twoprobe neutron–neutron logging were used as a reference. The results are presented as the scatter plots of the porosity coefficients relative to their reference values. Application of the procedure at the Lower Permian deposits shows that the initial concentration of boron in dolomites is higher than in limestones, which conforms with the facies model of sedimentation. The presence of boron in the Middle Carboniferous deposits is most likely associated with the processes of dissolution of the boron-bearing Lower Permian minerals by hydrocarbonate waters, and with their subsequent migration.
This work was supported by the Ministry of Science and Higher Education of the Russian Federation under Agreement No. 075-15-2022-297 within the framework of creation and development of the World-Class Research Center for Liquid Hydrocarbons.

keywords Porosity coefficient, thermal neutron–neutron logging, neutron gamma-ray logging, lithological identification, limestone, dolomite, boron
References

1. Belyaev A. A., Bogdan V. A., Korovin V. M. Development and introduction of procedural recommendations for neutron logging tools prkl-73 and prkl-73a operation, data processing and interpretation. Karotazhnik. 2015. No. 11(257). pp. 91–99.
2. Lobankov V. M , Svyatokhin V. D., Khatyanov F. I., Khisaeva D. A. Unity of measurements in oil-field geophysics. Neftegazovoe delo. 2012. No. 1. pp. 353–360.
3. Lobankov V. M., Svyatokhin V. D. Stationary neutron log standardization and calibration experience. Karotazhnik. 2009. No. 3(180). pp. 35–42.
4. Golovatskaya I. V., Gulin Yu. A., Enikeeva F. Kh., Velikzhanin V. A., Zhuravlev B. K. et al. Determination of Reservoir Properties and Lithology of Rocks in Radioactive and Acoustic Logs from Oil and Gas Wells (Interpretation Guidelines and Charts). Kalinin, 1984. 111 p.
5. Sultanov U. Sh., Bogdan V. A., Belyaev A. A., Gilmanshin T. A. Comparative tests of tools DRST-3, SRK-01 and PRKL-73A. Karotazhnik. 2013. No. 11(233). pp. 104–113.
6. Velizhanin V. A., Loboda N. G. The effect of rock mineral composition on neutron logging porosity. Karotazhnik. 2022. No. 1(315). pp. 16–22.
7. Abdrakhmanov R. F., Popov V. G. Formation of mineral water in the Bashkir Cis-Urals. Vestnik Akademii nauk RB. 2011. Vol. 16, No. 4. pp. 5–15.
8. Zubrov E. A. (Ed.). The USSR Hydrogeology. Volume XV : Bashkir ASSR. Moscow : Nedra, 1972. 344 p.
9. Alkhashman V. K., Lobankov V. M. Effect of sodium chloride concentration in sand bed and well on the indication of neutron logging instruments. Neftegazovoe delo. 2020. Vol. 18, No. 1. pp. 6–14.
10. Bogdan V. A., Belyaev A. A., Lobankov V. M. Metrological tests of DRST-3-90 and SRK-01 tools on rock porosity reference samples. Karotazhnik. 2016. No. 12(270). pp. 114–129.
11. Коskov V. N. Estimation of the carbonate reservoirs porosity using the neutron logging data. Vestnik Permskogo universiteta. Geologiya. 2014. Vol. 4, No. 25. pp. 81–84.
12. Lobankov V. M., Alkhashman V. K. The quantitative interpretation of the neutron log data as a process of measurement. Karotazhnik. 2023. No. 1(321). pp. 88–94.
13. Kalinina T. A., Chaikovsky I. I. Lithogeochemistry of Kungurian evaporates western side of Yuryuzan–Sylva depression (Permian Country). Lithosphere. 2015. No. 2. pp. 65–80.
14. Goncharenko O. P., Moskovsky G. A., Bukina T. F., Manikin A. G., Ruzlyaeva N. S. Peculiarities of boron mineral formation within the Western and South-Eastern parts of Pre-Caspian depression. Izvestiya vuzov. Geologiya i razvedka. 2003. No. 6. pp. 50–54.
15. Shcherbina V. V. (Ed.). Geochemistry, Formation and Occurrence of Boron and Boron Deposits. Moscow : Nedra, 1965. 328 p.
16. Popova S. T. (Ed.). Mineralogy, Geochemistry and Petrography Issues. Moscow ; Leningrad : Izdatelstvo Akademii nauk SSSR, 1946. 384 p.
17. Minkaev V. N. Geological Structure and Oil and Gas Potential of the Low Permian Deposits in the South Tatar Arch : Dissertation of Candidate of Geologo-Mineralogical Sciences. Ufa, 2004. 142 p.
18. Betekhtin A. G. Course of mineralogy : Tutorial. 3rd ed. Moscow : KDU, 2014. 736 p.
19. Kozhevnikov D. A. Neutron Characteristics of Rocks and Applications in Oil and Gas Geology. 2nd revised and enlarged edition. Moscow : Nedra, 1982. 221 p.
20. Gorbov A. F. Boron Geochemistry. Lenigrad : Nedra, 1976. 207 p.
21. Kahler A. C., MacFarlane R. E., Mosteller R. D., Kiedrowski B. C., Frankle S. C. et al. ENDF/B-VII.1 Neutron cross section data testing with critical assembly benchmarks and reactor experiments. Nuclear Data Sheets. 2011. Vol. 112, Iss. 12. pp. 2997–3036.
22. Grigorev Yu. V., Novikov-Borodin A. V. Activated Nuclear Reactions in Lithium– or Boron–Beryllium Mixture and Associate Hybrid-Type Energy Systems : Preprint. Moscow : IYaI RAN, 2016. 20 p.
23. Komar D. I., Kuten S. A. Influence of scattered neutron radiation on metrological characteristics of АТ140 Neutron Calibration Facility. Pribory i metody izmereniy. 2017. Vol. 8, No. 1. pp. 23–31.
24. Bogdan V. A., Sultanov Sh. Kh., Kotenev Yu. A., Chudinova D. Yu., Mashkova E. A. Theoretical prerequisites for increasing the capabilities of stationary neutron logging in determining the lithology of a carbonate section. Neft. Gaz. Novatsii. 2022. No. 3(256). pp. 37–41.
25. Bogdan V. A., Sultanov Sh. Kh, Kotenev Yu. A., Chudinova D. Yu., Mashkova E. A. Karbonat ksilişinin litoloji parçalanması zamanı stasionar neytron metodlarının imkanlarının artırılması. SOCAR Proceedings. 2023. No. 3. pp. 22–31.
26. Bogdan V. A., Sultanov Sh. Kh, Rabaev R. U., Kotenev Yu. A., Chudinova D. Yu. Lithological division of the carbonate section of oil wells along the line limestone dolomite to stationary neutron methods. Neft. Gaz. Novatsii. 2023. No. 12(276). pp. 21–26.
27. Li B. K., Cheng H. D., Ma H. Z. Boron isotope geochemistry of the Lakkor Co Salt Lake (Tibet) and its geological significance. Geofluids. 2022. Vol. 2022. ID 3724800.
28. Zhang W., Tan H., Xu W., Huang J. Boron source and evolution of the Zabuye salt lake, Tibet: Indication from boron geochemistry and isotope. Applied Geochemistry. 2023. Vol. 148. ID 105516.
29. Li B.-K., He M.-Y., Ma H.-Z., Cheng H.-D., Ji L.-M. Boron isotope geochemistry of Bangor Co Salt Lake (central Tibet): Implications for boron origin and uneven mixing of lake water. Acta Geochimica. 2022. Vol. 41, Iss. 5. pp. 731–740.
30. Lü Y., Zheng M., Chen W., Zhang X., Liu X. et al. Origin of boron in the Damxung Co Salt Lake (central Tibet): Evidence from boron geochemistry and isotopes. Geochemical Journal. 2013. Vol. 47, Iss. 5. pp. 513–523.
31. Vsevolozhskii V. A., Kireeva T. A. Formation of hydrogeochemical zoning inversions. Moscow University Geology Bulletin. 2009. Vol. 64, No. 5. pp. 289–295.

Language of full-text russian
Full content Buy
Back