Журналы →  Eurasian mining →  2024 →  №2 →  Назад

ENVIRONMENTAL PROTECTION
Название Review of applied research on phytoremediation in ecological balance recovery on mining-disturbed lands in global subsoil use
DOI 10.17580/em.2024.02.20
Автор Mironova Zh. V., Trinh Le Hung, Sizova T. N., Yuronen Yu. P.
Информация об авторе

Siberian Federal University, Krasnoyarsk, Russia

Mironova Zh. V., Associate Professor, PhD (Engineering), zenkoviv@mail.ru

Sizova T. N., Senior lecturer

 

Le Quy Don Technical University (LQDTU), Hanoi, Vietnam

Trinh Le Hung, Associate Professor, PhD (Engineering)

 

Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia
Yuronen Yu. P., Associate Professor, PhD (Engineering)

 

The paper was written with the participation of I. V. Zenkov, Professor, Doctor of Engineering Sciences

Реферат

The article presents the latest findings concerned with environmental problems and solutions in the mining industry using technologies of phytoremediation based on the natural ability of plants to accumulate toxic elements, including heavy metals, in their biomass. The review of applied ecological research shows that phytoremediation and absorption of toxic elements is implemented in all climate zones on all continents. Recent studies in phytoremediation pay much attention to introduction of organic substances in polluted soil to decrease or increase effect of accumulation of heavy metals by plants. Each research work actualizes removal of heavy metals from contaminated soils using indigenous plants.

Ключевые слова World mining industry, mining ecology, phytoremediation, plant biosystems, heavy metals, toxic elements, contaminated soil, ecological balance recovery
Библиографический список

1. Ducey T. F., Novak J. M., Sigua G. C. et al. Microbial response to designer biochar and compost treatments for mining impacted soils. Biochar. 2021. Vol. 3. pp. 299–314.
2. Mussali-Galante P., Santoyo-Martínez M., Castrejón-Godínez M. L. et al. The bioaccumulation potential of heavy metals by Gliricidia sepium (Fabaceae) in mine tailings. Environmental Science and Pollution Research. 2023. Vol. 30. pp. 38982–38999.
3. Castañeda-Espinoza J., Osvaldo Salinas-Sánchez D., Mussali-Galante P. et al. Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. Environmental Science and Pollution Research. 2022. Vol. 30. pp. 2509–2529.
4. Montserrat Navarrete Gutiérrez D., Nti Nkrumah P., Antony van der Ent et al. The potential of Blepharidium guatemalense for nickel agromining in Mexico and Central America. International Journal of Phytoremediation. 2021. Vol. 23, Iss. 11. pp. 1157–1168.
5. Ramírez-Zamora J., Mussali-Galante P., Rodríguez A. et al. Assisted phytostabilization of mine-tailings with Prosopis laevigata (Fabaceae) and biochar. Plants. 2022. Vol. 11, Iss. 24. ID 3441.
6. Tarso de Souza Costa E., Lopes G., Santos Carvalho G. et al. Phytoremediation of arsenic-contaminated soils amended with red mud combined with phosphogypsum. Water, Air, & Soil Pollution. 2021. Vol. 232, No. 417. DOI: 10.1007/s11270-021-05360-4
7. Rios C. O., Siqueira-Silva A. I., Pereira E. G. Revegetation of miningimpacted sites with a tropical native grass: Constraints of climate seasonality and trace-element accumulation. Journal of Environmental Management. 2023. Vol. 326, P. A. ID 116655.
8. Maria Isidória Silva Gonzaga, José Carlos de Jesus Santos, Luiz Fernando Ganassali Junior. et al. Copper uptake, physiological response, and phytoremediation potential of Brassica juncea under biochar application. International Journal of Phytoremediation. 2022. Vol. 24, Iss. 5. pp. 474–482.
9. Here B., Tapia R., Young B. J. et al. Phytoextraction of Cu, Cd, Zn and As in four shrubs and trees growing on soil contaminated with mining waste. Chemosphere. 2022. Vol. 308, P. 2. ID 136146.
10. Baragañoa D., Forjána R., Álvarez N., Gallego J. R., González A. Zero valent iron nanoparticles and organic fertilizer assisted phytoremediation in a mining soil: Arsenic and mercury accumulation and effects on the antioxidative system of Medicago sativa L. Journal of Hazardous Materials. 2022. Vol. 433. ID 128748.
11. Cárdenas-Aguiar E., Ruiz B., Fuente E., Gascó G., Méndez A. Improving mining soil phytoremediation with Sinapis alba by addition of hydrochars and biochar from manure wastes. Waste and Biomass Valorization. 2020. Vol. 11. pp. 5197–5210.
12. Monaci F., Trigueros D., Mingorance M. D., Rossini-Oliva S. Phytostabilization potential of Erica australis L. and Nerium oleander L.: A comparative study in the Riotinto mining area (SW Spain). Environmental Geochemistry and Health. 2020. Vol. 42. pp. 2345–2360.
13. Manteca-Bautista D., Pérez-Latorre A. V, Freitas H., Hidalgo-Triana N. Metal accumulation by Alyssum serpyllifolium subsp. malacitanum Rivas Goday (Brassicaceae) across different petrographic entities in South-Iberian ultramafic massifs: plant–soil relationships and prospects for phytomining. International Journal of Phytoremediation. 2022. Vol. 24, Iss. 12. pp. 1301–1309.
14. Llimós M., Bistué M., Marcelino J., Poschenrieder C., Martos S. A native Zn-solubilising bacterium from mine soil promotes plant growth and facilitates phytoremediation. Journal of Soils and Sediments. 2021. Vol. 21. pp. 2301–2314.
15. Dinu C., Vasile G.-G., Buleandra M. et al. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. Journal of Soils and Sediments. 2020. Vol. 20. pp. 2141–2154.
16. Capozzi F., Sorrentino M. C., Caporale A. G. et al. Exploring the phytoremediation potential of Cynara cardunculus: A trial on an industrial soil highly contaminated by heavy metals. Environmental Science and Pollution Research. 2020. Vol. 27. pp. 9075–9084.
17. Boi M. E., Cappai G., De Giudici G. et al. Ex situ phytoremediation trial of Sardinian mine waste using a pioneer plant species. Environmental Science and Pollution Research. 2021. Vol. 28. pp. 55736–55753.
18. Benhabylès L., Djebbar R., Miard F. et al. Biochar and compost effects on the remediative capacities of Oxalis pes-caprae L. growing on mining technosol polluted by Pb and As. Environmental Science and Pollution Research. 2020. Vol. 27. pp. 30133–30144.
19. Zabergja-Ferati F., Mustafa M. K., Abazaj F. Heavy metal contamination and accumulation in soil and plant from mining area of Mitrovica, Kosovo. Bulletin of Environmental Contamination and Toxicology. 2021. Vol. 107. pp. 537–543.
20. Anguilano L., Onwukwe U., Dekhli A. et al. Hyperaccumulation of lead using Agrostis tenuis. Environmental Systems Research. 2022. Vol. 11, No. 30. DOI: 10.1186/s40068-022-00279-z
21. Ghazaryan K. A., Movsesyan H. S., Minkina T. M., Nevidomskaya D. G., Rajput V. D. Phytoremediation of copper-contaminated soil by Artemisia absinthium: Comparative effect of chelating agents. Environmental Geochemistry and Health. 2022. Vol. 44. pp. 1203–1215.
22. Ghazaryan K. A., Movsesyan H. S., Minkina T. M., Sushkova S. N., Rajput V. D. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils. Environmental Geochemistry and Health. 2021. Vol. 43. pp. 1327–1335.
23. Wang L., Liao X., Dong Y., Lin H. Vanadium-resistant endophytes modulate multiple strategies to facilitate vanadium detoxification and phytoremediation in Pteris vittata. Journal of Hazardous Materials. 2023. Vol. 443, P. B. ID 130388.

24. Banda M. F., Mokgalaka N. S., Combrinck S., Regnier T. Five-weeks pot trial evaluation of phytoremediation potential of Helichrysum splendidum Less. for copper- and lead-contaminated soils. International Journal of Environmental Science and Technology. 2022. Vol. 19. pp. 1837–1848.
25. Venecio U. Ultra Jr., Sithabile Tirivarombo, Ogomoditse Toteng, Wendell Ultra. Enhanced establishment of Colophospermum mopane (Kirk ex Benth.) seedlings for phytoremediation of Cu-Ni mine tailings. Environmental Science and Pollution Research. 2022. Vol. 29. pp. 60054–60066.
26. Venecio U. Ultra Jr., Trust Manyiwa. Influence of mycorrhiza and fly ash on the survival, growth and heavy metal accumulation in three Acacia species grown in Cu–Ni mine soil. Environmental Geochemistry and Health. 2021. Vol. 43. pp. 1337–1353.
27. Mulenga C., Clarke C., Meincken M. Bioaccumulation of Cu, Fe, Mn and Zn in native Brachystegia longifolia naturally growing in a copper mining environment of Mufulira, Zambia. Environmental Monitoring and Assessment. 2022. Vol. 194, No. 8. DOI: 10.1007/s10661-021-09656-0
28. João Marcelo-Silva, Masego Ramabu, Stefan John Siebert. Phytoremediation and nurse potential of aloe plants on mine tailings. International Journal Environmental Research and Public Health. 2023. Vol. 20, Iss. 2. ID 1521.
29. Debela A. S., Dawit M., Tekere M., Itanna F. Phytoremediation of soils contaminated by lead and cadmium in Ethiopia, using Endod (Phytolacca dodecandra L). International Journal of Phytoremediation. 2022. Vol. 24, Iss. 13. pp. 1339–1349.
30. Timofeeva S. S., Ulrikh D. V., Timofeev S. S. Using the phytoremediation potential of ornamental shrubs in the revitalization of technozems of the Karabash industrial complex. MIAB. 2020. No. S6. pp. 42–50.
31. Timofeeva S. S. Modern technologies of bioremediation for environment. Ecology and Industry of Russia. 2016. No. 1. pp. 54–58.
32. Mahohi A., Raiesi F. The performance of mycorrhizae, rhizobacteria, and earthworms to improve Bermuda grass (Cynodon dactylon) growth and Pb uptake in a Pb-contaminated soil. Environmental Science and Pollution Research. 2021. Vol. 28. pp. 3019–3034.
33. Hosseinniaee S., Jafari M., Tavili A. et al. Perspectives for phytoremediation capability of native plants growing on Angouran Pb–Zn mining complex in northwest of Iran. Journal of Environmental Management. 2022. Vol. 315. ID 115184.
34. Ahmad I., Gul I., Irum S., Manzoor M., Arshad M. Accumulation of heavy metals in wild plants collected from the industrial sites-potential for phytoremediation. International Journal of Environmental Science and Technology. 2022. Vol. 20. pp. 5441–5452.
35. Ahmad Z., Khan S. M., Page S. E. et al. Environmental sustainability and resilience in a polluted ecosystem via phytoremediation of heavy metals and plant physiological adaptations. Journal of Cleaner Production. 2023. Vol. 385. ID 135733.
36. Thenmozhi Murugaian Palanivel, Pracejus B., Reginald V. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: Implications for arid regions. Environmental Science and Pollution Research. 2020. Vol. 27. pp. 17359–17369.
37. Hansong Chen, Juan Xiong, Linchuan Fang et al. Sequestration of heavy metals in soil aggregates induced by glomalin-related soil protein: A fiveyear phytoremediation field study. Journal of Hazardous Materials. 2022. Vol. 437. ID 129445.
38. Aikelaimu Aihemaiti, Jingjing Chen, Yunhui Hua et al. Effect of ferrous sulfate modified sludge biochar on the mobility, speciation, fractionation and bioaccumulation of vanadium in contaminated soil from a mining area. Journal of Hazardous Materials. 2022. Vol. 437. ID 129405.
39. Hong Niu, Hang Wu, Ke Chen et al. Effects of decapitated and root-pruned Sedum alfredii on the characterization of dissolved organic matter and enzymatic activity in rhizosphere soil during Cd phytoremediation. Journal of Hazardous Materials. 2021. Vol. 417. ID 125977.
40. Jally B., Laubie B., Chour Z., Muhr L., Qiu R. A new method for recovering rare earth elements from the hyperaccumulating fern Dicranopteris linearis from China. Minerals Engineering. 2021. Vol. 166. ID 106879.
41. Jia-Wen Zhou, Zhu Li, Meng-Shu Liu et al. Cadmium isotopic fractionation in the soil–plant system during repeated phytoextraction with a cadmium hyperaccumulating plant Species. Environmental Science and Technology. 2020. Vol. 54, Iss. 21. pp. 13598–13609.
42. Zhong-Rui Xu, Mei-Ling Cai, Si-Hong Chen. et al. High-affinity sulfate transporter Sultr1;2 is a major transporter for Cr(VI) uptake in plants. Environmental Science and Technology. 2021. Vol. 55, Iss. 3. pp. 1576–1584.
43. Li Chen, Dan Wang, Chan Long, Zheng-xu Cui. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmiumcontaminated soil by Zebrina pendula Schnizl. Scientific Reports. 2019. Vol. 9. ID 19817.
44. Lishan Rong, Shiqi Zhang, Jiali Wang et al. Phytoremediation of uraniumcontaminated soil by perennial ryegrass (Lolium perenne L.) enhanced with citric acid application. Environmental Science and Pollution Research. 2022. Vol. 29. pp. 33002–33012.
45. Zhang Y., Wang X., Ji H. Co-remediation of Pb contaminated soils by heat modified sawdust and Festuca arundinacea. Scientific Reports. 2020. Vol. 10, No. 1. ID 4663.
46. Yu Wang, Weidong Duan, Chao Lv. et al. Citric acid and poly-glutamic acid promote the phytoextraction of cadmium and lead in Solanum nigrum L. grown in compound Cd–Pb contaminated soils. Bulletin of Environmental Contamination and Toxicology. 2023. Vol. 110, No. 37. DOI: 10.1007/s00128-022-03682-5
47. Jiaxin Wang, Yue Xiong, Jiaen Zhang, Xuening Lu, Guangchang Wei. Naturally selected dominant weeds as heavy metal accumulators and excluders assisted by rhizosphere bacteria in a mining area. Chemosphere. 2020. Vol. 243. ID 125365.
48. Lin Zhang, Peng Zhang, Yoza B., Wen Liu, Hong Liang. Phytoremediation of metal-contaminated rare-earth mining sites using Paspalum conjugatum. Chemosphere. 2020. Vol. 259. ID 127280.
49. Mahdavian K., Asadigerkan S., Sangtarash M. H., Nasibi F. Phytoextraction and phytostabilization of copper, zinc, and iron by growing plants in Chahar Gonbad Copper Mining Area, Iran. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2022. Vol. 92. pp. 319–327.
50. Chauhan P., Mathur J. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil. Environmental Science and Pollution Research. 2020. Vol. 27. pp. 29954–29966.
51. Shukla P., Kidwai M., Narayan Sh. et al. Phytoremediation potential of Solanum viarum Dunal and functional aspects of their capitate glandular trichomes in lead, cadmium, and zinc detoxification. Environmental Science and Pollution Research. 2023. Vol. 30. pp. 41878–41899.
52. Haiying Lu, Changlei Xia, Arunachalam Chinnathambi et al. Optimistic influence of multi-metal tolerant Bacillus species on phytoremediation potential of Chrysopogon zizanioides on metal contaminated soil. Chemosphere. 2023. Vol. 311, P. 1. ID 136889.
53. Jiao A., Gao B., Gao M. et al. Effect of nitrilotriacetic acid and tea saponin on the phytoremediation of Ni by Sudan grass (Sorghum sudanense (Piper) Stapf.) in Ni-pyrene contaminated soil. Chemosphere. 2022. Vol. 294. ID 133654.
54. Puntaree Taeprayoon, Kunaporn Homyog, Weeradej Meeinkuirt. Organic amendment additions to cadmium-contaminated soils for phytostabilization of three bioenergy crops. Scientific Reports. 2022. Vol. 12. ID 13070.
55. Nguyen Ngoc Son Hai, Sanderson P., Qi F. et al. Effects of chelates (EDTA, EDDS, NTA) on phytoavailability of heavy metals (As, Cd, Cu, Pb, Zn) using ryegrass (Lolium multiflorum Lam.). Environmental Science and Pollution Research. 2022. Vol. 29. pp. 42102–42116.
56. Available at: https://www.google.earth.pro (Accessed: 16.04.2024).

Полный текст статьи Review of applied research on phytoremediation in ecological balance recovery on mining-disturbed lands in global subsoil use
Назад