Журналы →  CIS Iron and Steel Review →  2024 →  №2 →  Назад

Sintering
Название Pelletizing of ferruginous quartzites with red mud addition and heat treatment of obtained pellets in carbon monoxide atmosphere
DOI 10.17580/cisisr.2024.02.02
Автор A. B. Lebedev
Информация об авторе

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)

A. B. Lebedev, Cand. Eng., Researcher, Scientific Center “Problems of processing of mineral and technogenic resources”, e-mail: 2799957@mail.ru

Реферат

Use of concentrates with coarseness from 0.063 mm and lower as metallurgical raw material, is possible only after their corresponding enlargement, what is a complicated problem. This research describes comminution of ferruginous quartzites at first, and then sieving in the screen with coarseness < 0.063 mm. Red mud from Ural aluminium works was added as a binder. To increase pelletizing degree, the technique of red mud powdering on charge surface by compressed air was suggested. Charge humidity makes 6–9 % due to presence of high-dispersed clay of fine-porous particles with high moisture capacity in this charge. It was established that tensile strength during compression of green pellets with diameter 14–16 mm, which were obtained via this method, are 2 kg per a pellet. Aggregation of separate grains is noted already at the temperature 200–300 °C, what is explained by their partial surface oxidizing in hematite; at the same time, strength of pellets increases. It was also established that red mud addition during pelletizing of ferruginous quartzites is sufficient in the amount up to 5 %, while magnetite crystals show good aggregation with each other at the temperature 900 °C in reducing atmosphere of carbon monoxide, what leads to recrystallization of magnetite grains with forming of magnetite binding. The forming processes of slag, silica and quartzite are passing in the neutral media at the temperature 1000–1200 °C. It was found out that pellets with diameter 14–16 mm from ferruginous quartzites, which are subjected to roasting up to 1100 °C in reducing atmosphere, have hematite binding with relatively low strength. When increasing the temperature up to 1290 °C, pellets reach their tensile strength during compression up to 240–250 kg per a pellet. It was also found out that a sample at the temperature 1290 °C presents dense magnetite concentration in the central part of a pellet and melting of grains around their periphery provides strong structure; in this case qualitative composition of a pellet varies during phase transition of oxides from hematite to wustites.

Ключевые слова Fine ferruginous quartzites, granulometric composition, red mud, disk granulator, sintering, agglomeration, crushing strength
Библиографический список

1. Trushko V. L., Utkov V. A. Development of import substituting technologies for increasing productivity of sintering machines and strength of agglomerates. Journal of Mining Institute. 2016. No. 221. p. 675. DOI: 10.18454/pmi.2016.5.675
2. Sizyakov V. M., Brichkin V. N. On the role of calcium hydrocarboaluminates in improvement of the technology of complex processing of nephelines. Zapiski Gornogo instituta. 2018. Vol. 231. pp. 292–298. DOI: 10.25515/PMI.2018.3.292
3. Litvinova T. E., Tsareva A. A., Poltoratskaya M. E., Rudko V. A. Mechanism and thermodynamics of sorption process of ethyl alcohol on activated petroleum coke. Zapiski Gornogo instituta. 2024. pp. 1–12.
4. Li Ts. Development of tools for assessment of the value of technological potential for iron and steel enterprises. Azimut nauchnykh issledovaniy: ekonomika i upravlenie. 2019. Vol. 8. No. 4 (29). pp. 255–259.
5. Pratskova S. E., Burmistrov V. A., Starikova A. A. Thermodynamic simulation of oxide melts of the system CaO – Al2O3 – SiO2. Izvestiya vysshikh uchebnykh zavedeniy. Seriya “Khimiya i khimicheskaya technologiya”. 2020. Vol. 63 No. 1. pp. 45–50. DOI: 10.6060/ivkkt.20206301.6054
6. Su Z., Li L., Liu Z., Huang C., Wang D., Wang T. Fabrication, microstructure, and hydration of nano-Ca2SiO4 powder by coprecipitation method. Construction and Building Materials. 2021. Vol. 296. pp. 123737. DOI: 10.1016/j.conbuildmat.2021.123737
7. Boikov A.V., Savelyev R. V., Payor V. A., Erokhina O. O. The control method concept of bulk material behaviour in the pelletizing drum for improving the results of DEM-modeling. CIS Iron and Steel Review. 2019. Vol. 17. pp. 10–13.
8. Ovchinnikova E. L., Gorbunov V. B., Shapovalov A. N. On the problem of influence of kind of magnesium-containing materials on microstructure and properties of finished agglomerate. Teoriya i tekhnologiya metallurgicheskogo proizvodstva. 2019. No. 1 (28) pp. 18–23.
9. Boikov A.V., Savelyev R. V., Payor V. A., Erokhina O. O. Evaluation of bulk material behavior control method in technological units using DEM. Part 1. CIS Iron and Steel Review. 2020. Vol. 19. pp. 4–7.
10. Khalifa А. А., Bazhin V. Yu., Shalabi M. E. M. Kh., Abdelmoneim A., Omran M. Efficiency rise of red mud carbothermal reduction with processing by microwaves. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2021. Vol. 25. No. 1 (157). pp. 264–279.
11. Pelevin A. E., Kornilkov S. V., Dmitriev A. N., Bagazeev V. K. Quality improvement of magnetite concentrates in separate concentration of natural types and kinds of iron ores. Gornyi informatsionno-analiticheskiy byulleten. 2021. No. 11–1. pp. 306–317. DOI: 10.25018/0236_1493_2021_111_0_306
12. Puzanov V. P., Kobelev V. A. Introduction in the technologies of metallurgical structure forming. Ekaterinburg : UrO RAN. 2005. 501 p.
13. Dyakin P. V., Pivinskiy Yu. E., Prokhorenkov D. S., Doroganov V. A. Phase composition, structure and properties of the materials on the base of VKVS bauxite with composite composition in the system Al2O3–SiO2–SiC. Vestnik BGTU im. V. G. Shukhova. 2020. No. 1. pp. 115–125. DOI: 10.34031/2071-7318-2020-5-2-115-125
14. Mardashov D. V., Bondarenko A. V., Raupov I. R. Design procedure of technological parameters of non-Newtonian fluids injection into an oil well during workover operation. Journal of Mining Institute. 2022. DOI: 10.31897/PMI.2022.16
15. Bobkov V. I., Dli M. I., Fedulov A. S. Imitating simulation of the drying process for pellets from the wastes of apatite-nepheline ores. Izvestiya Sankt-Peterburgskogo gosudarstvennogo teknologicheskogo instituta (tekhnicheskogo universiteta). 2020. No. 55. pp. 109–115.
16. Cheng S., Shevchenko M., Hayes P. C., Jak E. Experimental Phase Equilibria Studies in the FeO–Fe2O3–CaO–SiO2 System in Air: Results for the Iron-Rich Region. Metallurgical and Materials Transactions B. 2020. Vol. 51 No. 4. pp. 1587–1602. DOI: 10.1007/s11663-020-01886-w
17. Pavlovets V. M. Use of pore-forming additives with mineral origination in manufacture of iron-bearing pelletized raw material. Vestnik Sibirskogo gosudarstvennogo industrialnogo universiteta. 2019. No. 3 (29). pp. 14–20.
18. Grudinskii P. I., Dyubanov V. G., Zinoveev D. V., Zheleznyi M. V. Solid-Phase Reduction and Iron Grain Growth in Red Mud in the Presence of Alkali Metal Salts. Russian Metallurgy (Metally). 2018. No. 11. pp. 1020–1026. DOI: 10.1134/S0036029518110071
19. Pyagay I. N., Svakhina Y. A., Titova M. E. et al. Effect of Hydrogel Molar Composition on the Synthesis of LTA-type Zeolites in the Utilization of Technogenic Silica Gel. Silicon. 2024. DOI: 10.1007/s12633-024-03053-1
20. Svakhina Y. A., Titova M. E., Pyagay I. N. Products of Apatite-Nepheline Ore Processing in the Synthesis of Low-Modulus Zeolites. Indonesian Journal of Science and Technology. 2023. Vol. 8 (1). pp. 49–64. DOI: 10.17509/ijost.v8i1.51979
21. Karpova K. S., Karpov A. V. Solid phase reduction of iron oxides in laboratorial conditions. Sovremennye materialy, tekhnika i tekhnologii. 2018. No. 1 (16). pp. 27–32.
22. Aydin S., Aydin M. E., Beduk F., Ulvi A. Removal of antibiotics from aqueous solution by using magnetic Fe3O4/red mudnanoparticles. Science of The Total Environment. 2019. Vol. 670. pp. 539–546. DOI: 10.1016/j.scitotenv.2019.03.205
23. Gzogyan T. N., Gzogyan S. R. Comparative analysis of destruction of non-oxidized ferruginous quartzites via volumetric compression. Gornyi informatsionno-analiticheskiy byulleten. 2022. No. 4. pp. 43–55. DOI: 10.25018/0236_1493_2022_4_0_43
24. Bersenev I. S., Gorbachev V. A., Klein V. I., Petryshev A. Yu., Yaroshenko Yu. G. To the problem of connection between ultimate stresses in agglomerate and its strength in rotating drum. Stal. 2013. No. 1. pp. 6–8.
25. Khalifa A. A., Bazhin V. Yu., Shalabi M. E. M. Kh. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow. Journal of Mining Institute. 2022. Vol. 254. pp. 261–270. DOI: 10.31897/PMI.2022.18
26. Malysheva T. Ya., Dolitskaya O. A. Petrography and mineralogy of iron ore raw materials. A manual for high schools. Moscow: MISiS. 2004. 424 p.
27. Hammond O. S., Atri R. S., Bowron D. T., de Campo L., Diaz-Moreno S., Keenan L. L., Doutch J., Eslava S., Edler K. J. Structural evolution of iron forming iron oxide in a deep eutectic-solvothermal reaction. Nanoscale. 2021. Vol. 13. No. 3. pp. 1723–1737. DOI: 10.1039/D0NR08372K
28. Shibaeva D., Tereshchenko S., Asanovich D., Shumilov P. On the need to classify rock mass fed to dry magnetic separation. Journal of Mining Institute. 2022. Vol. 256. pp. 603–612. DOI: 10.31897/PMI.2022.79
29. Jin J., Liu X., Yuan S., Gao P., Li Y., Zhang H., Meng X. Innovative utilization of red mud through co-roasting with coal gangue for separation of iron and aluminum minerals. Journal of Industrial & Engineering Chemistry. 2021. Vol. 98. pp. 298–307. DOI: 10.1016/j.jiec.2021.03.038
30. Hoang M. D., Do Q. M., Le V. Q. Effect of curing regime on properties of red mud based alkali activated materials. Construction and Building Materials. 2020. Vol. 259. p. 119779. DOI: 10.1016/j.conbuildmat.2020.119779
31. Opalev A., Alekseeva S. Methodological substantiation of the choice for optimal modes of equipment operation during the stage-wise concentrate removal in iron ores beneficiation. Journal of Mining Institute. 2022. Vol. 256. pp. 593–602. DOI: 10.31897/PMI.2022.80
32. Reichelt L., Hippmann S., Brichkin V. N., Bertau M. Oxidation of Sulphur Dioxide using Micro- and Nanoparticles of various Iron Oxides. Journal of Inorganic and General Chemistry. 2021. Vol. 647. pp. 1583–1593. DOI: 10.1002/zaac.202100091
33. Pelevin A. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Journal of Mining Institute. 2022. Vol. 256. pp. 579–592. DOI: 10.31897/PMI.2022.61
34. Kudinova A. A., Poltoratckaya M. E., Gabdulkhakov R. R., Litvinova T. E., Rudko V.A. Parameters influence establishment of the petroleum coke genesis on the structure and properties of a highly porous carbon material obtained by activation of KOH. Journal of Porous Materials. 2022. Vol. 29. No. 5. pp. 1–18. DOI: 10.1007/s10934-022-01287-1
35. Shiryaeva E. V., Podgorodetskiy G. S., Malysheva T. Ya., Detkova T. V., Gorbunov V. B. Influence of low alkali red mud on composition and structure of agglomerated charge on the base of iron ore concentrates with various genesis. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2014. Vol. 57. No. 9. pp. 13–17.

Полный текст статьи Pelletizing of ferruginous quartzites with red mud addition and heat treatment of obtained pellets in carbon monoxide atmosphere
Назад