Журналы →  CIS Iron and Steel Review →  2024 →  №2 →  Назад

Ferroalloys
Название Thermally coupled combustion synthesis of composite ferroalloys
DOI 10.17580/cisisr.2024.02.05
Автор M. Kh. Ziatdinov
Информация об авторе

Tomsk State University (Tomsk, Russia)

M. Kh. Ziatdinov, Dr. Eng., Senior Researcher, e-mail: ziatdinovm@mail.ru

Реферат

The results of a study of thermally coupled processes of self-propagating high-temperature synthesis (SHS) of composite ferroalloys are presented. It is shown that activation of the synthesis process by burning weakly exothermic systems based on ferroalloys is possible using various techniques. Namely, it can be realized by physical heating of the SHS charge in an electric furnace; mechanical activation of the exothermic charge; recovery of heat energy of synthesis; chemical heating of the SHS charge with termite additives and the use of a chemical oven. Various options of thermal stimulation for gas-free and filtration combustion synthesis with participation of ferroalloys, known as the metallurgical SHS process, are considered on the base of specific examples. Thermal activation of the gasless procedure of the metallurgical SHS process is considered on the example of the combustion of the ferroborontitanium system, and the filtration procedure – on the example of nitriding of low-carbon ferrochromium. The combustion products of ferroboron-titanium mixtures are considered as promising materials for steel microalloying with boron and titanium, and nitrided ferrochrome with low carbon content is one of the most demanded materials in melting of nitrogen-containing steels. The results of the studies carried out in this work have shown that the low exothermicity of the synthesis reactions of composite ferroalloys is not an obstacle to their implementation in the combustion mode. Well-known and new stimulation techniques for combustion synthesis allow to significantly expand the range of synthesized materials. Technological techniques such as heat energy recovery, mechanical activation of the exothermic charge, physical heating of the SHS charge in an electric furnace, chemical heating of the SHS charge with termite additives and the use of a chemical oven ensure the involvement of new raw materials with less exothermicity in the SHS process and carrying out of the process in milder conditions.

This study was supported by the Tomsk State University Development Program (Priority-2030).

Ключевые слова Composite ferroalloys, self-propagating high-temperature synthesis, nitrides, borides, nitrided ferroalloys, thermal coupling, filtration combustion, gasless combustion
Библиографический список

1. Material forming high-exothermic processes: metallothermy and combustion in termite-type systems. Edited by M. I. Alymov. Moscow: RAN. 2021. 376 p.
2. Lyakishev N. P., Pliner Yu. R., Ignatenko G. F., Lappo S. I. Aluminothermy. Moscow: Metallurgiya. 1978. 424 p.
3. Amosov A. P., Borovinskaya I. P., Merzhanov A. G. Powder technology for self-propagating high-temperature synthesis of materials. Moscow: Mashinostroenie. 2007. 567 p.
4. Rogachev A. S., Mukasyan A. S. Combustion for materials synthesis. Moscow: Fizmatlit. 2012. 400 p.
5. Liu G., Li J., Kexin, K. Combustion synthesis of refractory and hard materials: A review. Int. Journal of Refractory Metals and Hard Materials. 2013. Vol. 39. pp. 90–102.
6. Novitskaya E., Kelly J. P., Bhaduri S., Graeve O. A. A review of solution combustion synthesis: an analysis of parameters controlling powder characteristics. International Materials Reviews. 2021. Vol. 66. Iss. 3. pp. 188–214.
7. Naiborodenko Yu. S., Itin V. I., Merzhanov A. G. et al. Gasless combustion of metals mixture and self-propagating high-temperature synthesis of intermetallics. Izvestia vuzov. Fizika. 1973. No. 6. pp. 145–146.
8. Dubrovin A. S. Metallothermy of special alloys. Chelyabinsk: Izdatelstvo YuUrGU. 2002. 254 p.
9. Korchagin M. A., Lyakhov N. Z., Zarko V. E. Influence of preliminary mechanical activation of reacting compositions on the processes of selfpropagating high-temperature synthesis. Technological combustion. A collective monograph. Moscow: RAN. 2018. 612 p.
10. Aldushin A. P. Filtration combustion of metals. Distribution of thermal waves in heterogeneous media. Novosibirsk: Nauka. 1988. pp. 52–71.
11. Ziatdinov M. Kh. Chromium combustion in nitrogen coflow. Fizika goreniya i vzryva. 2016. Vol. 52. No. 4. pp. 51–60.
12. Bayliss A., Shafirovich E., Volpert V. A. Coflow filtration combustion waves. Journal Combustion Theory and Modelling. 2023. Vol. 27. Iss. 7. pp. 853–868.
13. Tugutov A. V., Ziatdinov M. Kh., Maksinov Yu. M. The method of fabrication of composite boron-containing alloys for steel alloying. Author’s certificate 1830393 USSR. MPK S22S 33/00. Bulleten izobreteniy. 1993. No. 18. Published 30.07.1993.
14. Alymov M. I., Seplyarskiy B. S., Kochetkov R. A., Lisina T. G. New approach for conduction of thermally conjugated processes on the example of granulated mixture (Ni+Al)–(Ti+C). Doklady RAN. 2019. Vol. 487. No. 1. pp. 45–48.
15. Merzhanov A. G. Thermally conjugated processes of self-propagating high-temperature synthesis. Doklady RAN. 2010. Vol. 434. No. 4. pp. 489–492.
16. Maslov V. M., Borovinskaya I. P., Ziatdinov M. Kh. Combustion of niobium-aluminium and niobium-germanium systems. Fizika goreniya i vzryva. 1979. Vol. 15. No. 1. pp. 49–57.
17. Ziatdinov M. Kh. Metallurgical SHS Processes as a Route to Industrial-Scale Implementation: An Autoreview. International Journal of Self-Propagating High-Temperature Synthesis. 2018. Vol. 27. No. 1. pp. 1–13.
18. Ziatdinov M. Kh. From the history of nitrided ferroalloys. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2020. Vol. 63. No. 10. pp. 773–781.
19. Shatokhin I. M., Ziatdinov M. Kh., Manashev I. R., Shiryaev O. P., Kartunov A. D. Self-propagating high-temperature synthesis (SHS) of composite ferroalloys. CIS Iron and Steel Review. 2019. Vol. 18. No. 1. pp. 52–57.
20. Boniardi M. V., Casaroli A., Monella L. S. S., Mazzola M. Failure analysis of boron steel components for automotive applications. Frattura ed Integrità Strutturale. 2023. Vol. 17. No. 64. pp. 137–147.
21. Weiser I. F., Herrig T., Bergs T. Fine Blanking Limits of Manganese-Boron-Steel in Fine Blanking Compared to Tempered Steel with Variation of Sheet Metal Temperature. Key Engineering Materials. 2022. Vol. 926. pp. 1122–1130.
22. Kolokoltsev V. M., Petrochenko E. V., Molochkova O. S. Influence of boron modification and cooling conditions during solidification on structural and phase state of heat- and wear-resistant white cast iron. CIS Iron and Steel Review. 2018. Vol. 15. pp. 11–15.
23. Ming-chen Ma, Chao-qing Luo, Si-min Chen, Hong-qun Tang, Shanshan Hu, Yu-mei Zhou & Jian-lin Liang. Microstructure evolution and mechanical properties of high-boron steel with different ratios of boron and carbon. China Foundry. 2022. Vol. 19. pp. 169–176.
24. Maznichevsky A. N., Goikhenberg Yu. N., Sprikut R. V. Influence of nitrogen, boron and rare earth metals on technological plasticity and corrosion resistance of austenitic steel. Chernye metally. 2020. No. 9. pp. 25–31.
25. Kostina M. V., Rigina L. G. Nitrogen-containing steels and methods of their production. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2020. Vol. 63. No. 8. pp. 606–622.
26. Kaputkina L. M., Kaputkin D. E., Smarygina I. V., Kindop V. E. Laser welding of new austenitic cryogenic corrosion-resistant steels alloyed with nitrogen. Chernye metally. 2021. No. 7. pp. 56–62.
27. Kaputkina L. M., Svyazhin A. G. High Nitrogen Steels with special functional properties. CIS Iron and Steel Review. 2014. Vol. 9. pp. 19–25.
28. Rashev T. V., Eliseev A. V., Zhekova L. T., Bogev P. V. High nitrogen steels. Izvestiya. Ferrous Metallurgy. 2019. Vol. 62. No. 7. pp. 503–510.
29. Krastev D. Nitriding of ferroalloys. Conference Paper. May 2014. VIth International Metallurgical Congress. Ohrid, Macedonia. 2014. pp. 1–6.
30. Li Shuai, Zhang Chengsong, Lu Jiping, Chen Ruiduo, Chen Dazhi, Cui Guodon. A review of progress on high nitrogen austenitic stainless-steel research. Materials Express. 2021. Vol. 11. No. 12. pp. 1901–1925.
31. Voznesenskaya N. M., Tonysheva O. A., Romanenko D. N., Eliseev E. A. Study of the influence of temperature for deformation on the change in the microstructure of austenitic nitrogen-containing VNS53-Sh steel. Chernye metally. 2023. No. 12. pp. 110–115.
32. Zhuchkov V. I., Zayakin O. V., Akberdin A. A. Prospects of boron use in metallurgy. Message 1. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2021. Vol. 64. No. 7. pp. 471–476. DOI: 10.17073/0368-0797-2021-7-471-476
33. Mills T. The Thermodinamic Relations in the Chromium-Nitrogen System. Less-Common Metals. 1972. Vol. 26. No. 1. pp. 223–234.
34. Mizin V. G., Chirkov N. A., Ignatyev V. S. et al. Ferroalloys: A reference book. Moscow: Metallurgiya. 1992. 415 p.
35. Chukhlomina L. N., Maksimov Yu. M. Relationships in synthesis of chromium nitride by combustion of ferrochrome in nitrogen. Russian Journal of Applied Chemistry. 2009. Vol. 82. No. 5. pp. 757–762.
36. Ziatdinov M. Kh., Shatokhin I. M., Leontyev L. I. SHS Technology for Composite Ferroalloys. Part 1. Metallurgical SHS synthesis of ferrovanadium and ferrochromium nitrides. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2018. Vol. 61. No. 5. pp. 339–347.
37. Samsonov G. V. Nitrides. Kiev: Naukova dumka. 1969. 378 p.
38. Ziatdinov M. Kh., Shatokhin I. M., Leontyev L. I. SHS Technology for Composite Ferroalloys. Part 1. Metallurgical SHS: Nitrides of Ferrovanadium and Ferrochromium. Steel in translation. 2018. Vol. 48. No. 5. pp. 269–276.

Полный текст статьи Thermally coupled combustion synthesis of composite ferroalloys
Назад