Journals →  CIS Iron and Steel Review →  2024 →  #2 →  Back

Metal Science
ArticleName Influence of metal structural heterogeneity in a sheet tube billet on forming mechanical properties and crack resistance of steel pipes for operation in the Arctic climate conditions
DOI 10.17580/cisisr.2024.02.12
ArticleAuthor N. O. Shaposhnikov, O. V. Shvetsov, B. S. Ermakov, S. A. Vologzhanina
ArticleAuthorData

Peter the Great St. Petersburg Polytechnic University (St. Petersburg, Russia)

N. O. Shaposhnikov, Cand. Eng., Chief Engineer of the Project – Scientific and Technological Complex “New Technologies and Materials”, e-mail: shaposhn_no@spbstu.ru
B. S. Ermakov, Dr. Eng., Head of the Materials Resource Laboratory, e-mail: ermakov55@bk.ru
O. V. Shvetsov, Cand. Eng., Deputy Head of the Materials Resource Laboratory, Scientific and Technological Complex “New Technologies and Materials”, e-mail: shvetsov_ov@spbstu.ru

 

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)
S. A. Vologzhanina, Dr. Eng., Prof., Dept. of Materials Science and Technology of Art Products, e-mail: vologzhanina_sa@pers.spmi.ru

Abstract

Oil and gas main pipelines, which provide delivery of gaseous and liquid raw materials from the Russian distant Arctic and Sub-Arctic regions for processing at the production facilities in the central RF areas, remain the base of the transportation system for energy carriers. New pipeline systems are expanding far and far to the north and north-east mostly uninhabited territories with weakly developed transport infrastructure and extremal operating conditions – low climatic temperatures and increased corrosion activity of mined raw materials. Analysis of operation of pipeline systems in such conditions displayed enormous rise of the number of accidents and rejects at pipelines in comparison with operation of such pipelines in the central RF regions. Thus, metal structural heterogeneity in a sheet tube billet, presented by its increased banding and difference of grain size as well as presence of large non-metallic inclusions, are considered as one of the key causes of rise of the number of accidents. The results of investigation of the effect of non-metallic inclusions and heterogeneity of the structural state of a sheet billet on mechanical properties, crack resistance and corrosion resistance of the basic metal and heat-affected zones are presented in this research. The examined tubes are used for transportation of energy carriers at the minimal possible climatic temperatures.

The research was carried out within the State assignment of the RF Ministry of Science and Higher Education (theme No. FSEG-2024-0009 “Development of models for degradation of service properties of metallic and composite materials for building in the conditions of permafrost soils”).

keywords Steel structure heterogeneity, low climatic temperatures, difference of grain size, banding, crack resistance, mechanical properties, corrosion resistance
References

1. Zhdaneev O. V. Providing technological sovereignty of Russian Federation fuel and energy complex. Zapiski Gornogo instituta. 2022. Vol. 258. pp. 1061–1078. DOI: 10.31897/PMI.2022.107
2. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenki A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo instituta. 2023. Vol. 259. pp. 95–111. DOI: 10.31897/PMI.2022.100
3. Buslaev G., Tsvetkov P., Lavrik A., Kunshin A., Loseva E., Sidorov D. Ensuring the Sustainability of Arctic Industrial Facilities under Conditions of Global Climate Change. Resources. 2021. No. 10. p. 128. DOI: 10.3390/resources10120128
4. Romasheva N., Dmitrieva D. Energy Resources Exploitation in the Russian Arctic: Challenges and Prospects for the Sustainable Development of the Ecosystem. Energies. 2021. Vol. 14. 8300. DOI: 10.3390/en14248300
5. Laverov N. P., Dmitrievskiy A. N., Bogoyavlenskiy V. I. Fundamental aspects of the development of oil and gas resources in the Russian Arctic shelf. Arktika: ekologiya i ekonomika. 2011. No. 1. pp. 26–37. DOI: 10.25283/2223-4594
6. The certificate of Innovation development program for “Gazprom neft” until 2025. “Gazprom neft”. St. Petersburg. 2017. p. 28. Available at: www.gazprom.ru/f/posts/97/653302/prir-passport-2018-2025.pdf
7. Cherepovitsyn A. E., Tcvetkov P. S., Evseeva O. O. Critical analysis of methodological approaches to assessing sustainability of arctic oil and gas projects. Journal of Mining Institute. 2021. Vol. 249. pp. 463–479. DOI: 10.31897/PMI.2021.3.15
8. Shammazov I. A., Sidorkin D. I., Batyrov A. M. Stability providing of ground main pipelines in the regions of complete distribution of permafrost rock masses. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2022. Vol. 333. No. 12. pp. 200–207. DOI: 10.18799/24131830/2022/12/3832
9. Prischepa O. M., Nefedov Y. V. Arctic shelf oil and gas prospects from lower-middle paleozoic sediments of the Timan–Pechora oil and gas province based on the results of a regional study. Resources. 2022. No. 1. pp. 1–24. DOI: 10.3390/resources11010003
10. Egorov A. S., Prischepa O. M. Deep structure, tectonics and petroleump otential of the western sector of the Russian Arctic. Journal of Marine Science and Engineering. 2021. No. 158. pp. 1–26. Available at: https://www.mdpi.com/2077-1312/9/3/258
11. Hughes K. A., Boyle C. P., Morley-Hurst K., Gerrish L., Colwell S. R., Convey P. Loss of research and operational equipment in Antarctica: Balancing scientific advances with environmental impact. Journal of Environmental Management. 2023. Vol. 48. 119200. DOI: 10.1016/j.jenvman.2023.119200
12. Shammazov I. A., Karyakina E. D., Shalygin A. V. Simulation of stress-strain state of an underground pipeline section for pumping of liquefied natural gas. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2023. No. 3. pp. 77–93. DOI: 10.17122/ntjoil-2023-2-77-93
13. Gorynin I. V., Malyshevskiy V. A., Khlusova E. I. et al. Cold-resistant steels for technical remedies for the Arctic shelf mastering. Voprosy materialovedeniya. 2009. No. 3 (59). pp. 108–126.
14. Bolobov V. I., Popov G. G. Methodology for testing pipeline steels for resistance to grooving corrosion. Journal of Mining Institute. 2021. Vol. 252. pp. 854–860. DOI: 10.31897/PMI.2021.6.7
15. Saleem B., Ahmed F., Asif Rafiq M. et al. Stress corrosion failure of an X52 grade gas pipeline. Engineering Failure Analysis. 2014. Vol. 46. pp. 157–165. DOI: 10.1016/j.engfailanal.2014.08.011
16. Pritula V. V. Corrosion situation at the Russian gas and oil pipelines and their industrial safety. Truboprovodnyi transport: teoriya i praktika. 2015. No. 1 (48). pp. 6–10.
17. Tian Y., Palaev A. G. , Shammazov I. A., Ren Y. Non-destructive testing technology for corrosion wall thickness reduction defects in pipelines based on electromagnetic ultrasound. Frontiers in Earth Science. 2024. Vol. 12. No. 1. DOI: 10.3389/feart.2024.1432043
18. Ermakov B. S., Shaposhnikov N. O. Influence of technological factors on forming the properties of pipe metal in the main pipelines. Metallurg. 2018. No. 8 (62). pp. 39–43.
19. Gorbatenko V. P., Petrushchak S. V. Features of influence of chemical composition on mechanical properties of pipe steels with strength grade K60 depending on the temperature of finishing sheet rolling. Stal. 2018. No. 1. pp. 37–42.
20. Sych O. V., Kruglova A. A., Khlusova E. I., Orlov V. V. Features of forming the structure and properties of 10G2FB steel after hot plastic deformation. Stal. 2013. No. 1. pp. 56–62.
21. Sych O. V., Korotovskaya S. V., Khlusova E. I., Golubeva M. V., Popkov A. G., Yashina E. A. Structure and properties of new high-strength steels produced by PAO Severstal’ for Arctic structures. Metallurgist. 2023. Vol. 66. No. 11–12. pp. 1344–1359. DOI: 10.1007/s11015-023-01450-2
22. Kupriyanova O. A., Tingaev A. K., Ivanov M. A., Poletskov P. P. Analysis of cold cracking resistance when welding high-strength coldresistant steel. Chernye metally. 2024. No. 6. pp. 31–41.
23. Alkhimenko A. A., Kharkov A. A., Shemyakinskiy B. A., Shaposhnikov N. O. Development of the technique for accelerated testing of pipe steels of oil grade and dimension range on corrosion cracking. Zavodskaya laboratoriya. Diagnostika materialov. 2020. Vol. 86. No. 9. pp. 70–76. DOI: 10.26896/1028-6861-2020-86-9-70-76
24. Markadeeva A. Yu., Ilyin A. V., Gusev M. A. Study of cracking resistance in the heat-affected zone of steel welded joints, which are applied for Arctic constructions. Vector nauki TGU. 2018. No. 1 (43). pp. 43–51. DOI: 10.18323/2073-5073-2018-1-43-51
25. Shaposhnikov N. O. Ermakov B. S. Effect of Production Factors on Main Oil Pipeline Pipe. Metal Property. Metallurgist. 2018. Vol. 62. No. 11. pp. 143–147. DOI: 10.1007/s11015-018-0718-7
26. Efron L. I., Morozov Yu. D., Goli-Oglu. E. A. Influence of controlled rolling conditions on structure and properties of microalloyed steels for large-diameter pipes. Metallurg. 2011. No. 1. pp. 69–74.
27. Sych O. V., Korotovskaya S. V., Khlusova E. I., Novoskoltsev N. S. Development of thermal rolling regimes of low-alloy arc steel with quasi-homogeneous ferrite-bainitic structure. Inorganic Materials: Applied Research. 2022. Vol. 13. No. 6. pp. 1459–1468. DOI: 10.1134/s2075113322060247
28. Ermakov B. S., Alhimenko A. A., Shaposhnikov N. O., Tsvetkov A. S., Shirokov A. V. Study of the crystallographic texture of pipe steel. Letters on Materials. 2020. No. 10 (1). pp. 48–53. DOI: 10.22226/2410-3535-2020-1-48-53
29. Smarygina I. V., Aleshchenko A. S., Antoshchenkov A. E., Kaputkina L. M. Structure and properties of hot-rolled seamless pipes made of carbon and low-alloy steels after heat treatment. Chernye metally. 2024. No. 4. pp. 55–62.
30. Barraza-Fierro J. I., Campillo-Illanes B., Li X., Castaneda H. Steel microstructure effect on mechanical properties and corrosion behavior of high strength low carbon steel. Metallurgical and materials transactions A. 2014. No. 9 (45). pp. 3981–3994. DOI: 10.1007/s11661-014-2320-3
31. Demina Yu. A., Tyutin M. R., Marchenkov A. Yu., Levin V. P., Botvina L. R. Influence lf long-term operation on physical and mechanical properties and destruction mechanisms of pipe steels with strength grade X70. Deformatsiya i razrushenie materialov. 2021. No. 12. pp. 23–35. DOI: 10.31044/1814-4632-2021-12-23-35
32. Zaripov R. F., Korobkov G. E. Variation of mechanical properties of Arctic pipelines. Problemy sbora, podgotovki i transporta nefti i nefteproduktov. 2020. No. 1 (124). pp. 52–61. DOI: 10.17122/ntj-oil-2020-2-52-61
33. Sorokin M. V., Lavrukhina Z. V., Khodan A. N., Maltsev D. A., Ryazanov A. I., Gurovich B. A., Bokstein B. S., Rodin A. O. Effect of subgrain structure on the kinetics of phosphorus segregation in grain boundaries. Materials Letters. 2015. Vol. 158. pp. 151–154. DOI: 10.1016/j.matlet.2015.05.145
34. Wang Feiyang, Wu Hong-Hui, Zhou Xiaoye, Bai Penghui, Shang Chunlei, Wang Shuize, Wu Guilin, Gao Junheng, Zhao Haitao, Zhang Chaolei, Mao Xinping. First-principle study on the segregation and strengthening behavior of solute elements at grain boundary in BCC iron. Journal of Materials Science & Technology. 2024. 189. DOI: 10.1016/j.jmst.2024.01.005
35. Gerasimov S. A., Eliseev E. A., Tonysheva O. A., Leonov A. V. Influence of chemical composition in grain boundaries for low carbon steels of martensite class after long tempering. Metallurg. 2022. No. 12. pp. 26–36. DOI: 10.52351/00260827_2022_12_26

Full content Influence of metal structural heterogeneity in a sheet tube billet on forming mechanical properties and crack resistance of steel pipes for operation in the Arctic climate conditions
Back