ArticleName |
Study of hardness
distribution in a rail welded joint after welding with accelerated cooling |
ArticleAuthorData |
Moscow State University of Civil Engineering (Moscow, Russia)
A. I. Karlina, Cand. Eng., Scientific Researcher, e-mail: karlinat@mail.ru
A. P. Vinogradov Institute of Geochemistry of the Siberian Branch of the Russian Academy of Sciences (Irkutsk, Russia) V. V. Kondratyev, Cand. Eng., Senior Scientific Researcher
Irkutsk State Transport University (Irkutsk, Russia)1 ; Angarsk State Technical University (Angarsk, Russia)2 V. E. Gozbenko, Dr. Eng., Prof.1, 2
Irkutsk National Research Technical University (Irkutsk, Russia) R. V. Kononenko, Cand. Eng. |
References |
1. Smirnov L. A. et al. quality improvement of railroad rails. Chernaya metallurgiya. Byulleten naucho-tekhnicheskoy i ekonomicheskoy informatsii. 2005. No. 6. pp. 43–49. 2. Shur E. A. Damages of rails. Moscow : Intekst. 2012. 192 p. 3. Schastlivtsev V. M., Yakovleva I. Ya. Thin-lamellar pearlite – the first volumetric nano-material in carbon steel. Izvestiya RAN. Seriya fizicheskaya. 2015. Vol. 79. No. 9. pp. 1221–1224. 4. Prospective directions of the rail industry development. Technologies of production and operation. Materials of the V International scientific-technical conference. Sochi. May 24–25, 2022. Moscow : OOO «EVRAZ». 2023. 228 p. 5. Alekhin A. L., Alekhin L. I. On metal hardness in welded joints and roughness on rail rolling surfaces. Put i putevoe khozyaistvo. 2013. No. 11. pp. 9–10. 6. Gromov V. E., Yuryev A. B., Morozov K. V., Ivanov Yu. F. Microstructure of quenched rails. Novokuznetsk : Inter-Kuzbass. 2014. 216 p. 7. Shtaiger M. G., Balanovskiy A. E. Analysis of welding technologies for high-strength rails from the position of structure forming in building and reconstruction of high-speed railroads. Part 1. iPolytech Journal. 2018. Vol. 22 (6). pp. 48–74. 8. Shtaiger M. G., Balanovskiy A. E. Analysis of welding technologies for high-strength rails from the position of structure forming in building and reconstruction of high-speed railroads. Part 2. iPolytech Journal. 2018. Vol. 22 (7). pp. 41–68. DOI: 10.21285/1814-3520-2018-7-41-68 9. Genkin I. Z. Welded rails and turnout switches. Moscow : Intekst. 2003. 93 p.
10. Dotsenko V. E. Contact welding of rails. Moscow : Mashgiz. 1949. 312 p. 11. Kuchuk-Yatsenko S. I., Khryashcheva N. K., Shlyapin V. B. The process of continuous melting during contact welding. Put i putevoe khozyaistvo. 1973. No. 1. pp. 9–10. 12. Kuchuk-Yatsenko S. I., Krivenko V. G., Bogorskiy M. V. Intensification of rail heating during contact welding with impulse melting. Avtomaticheskaya svarka. 1977. No. 4. pp. 45–50. 13. Kuchuk-Yatsenko S. I. Contact butt welding with continuous melting. Kiev : Naukova dumka. 1976. 213 p. 14. Bauri L. F. et al. The role of welding parameters on the control of the microstructure and mechanical properties of rails welded using FBW. Journal of Materials Research and Technology. 2020. Vol. 9. No. 4. pp. 8058–8073. 15. Verhoeven J. D., Gibson E. D. The divorced eutectoid transformation in steel. Metallurgical and Materials Transactions A. 1998. Vol. 29. pp. 1181–1189. 16. Nishikawa L. P., Goldenstein H. Divorced Eutectoid on Heat-Affected Zone of Welded Pearlitic Rails. JOM. 2019. Vol. 71. pp. 815–823. DOI: 10.1007/s11837-018-3213-5 17. Schastlivtsev V. M., Mirzaev D. A., Yakovleva I. L. et al. Pearlite on carbon steels. Ekaterinburg: UrO RAN. 2006. 312 p. 18. Tushinskiy L. I., Bataev A. A., Tikhomirova L. B. Pearlite structure and steel constructive strength. Novosibirsk: Nauka. 1993. 280 p. 19. Bauri L. F., Alves L. H. D., Pereira H. B., Tschiptschin A. P., Goldenstein H. The role of welding parameters on the control of the microstructure and mechanical properties of rails welded using FBW. Journal of Materials Research and Technology. 2020. Vol. 9. No. 4. pp. 8058–8073. 20. Rodrigues K. F., Mourão G. M. M., Faria G. L. F. Kinetics of isothermal phase transformations in premium and standard rail steels. Steel Res. Int. 2021. Vol. 92. No. 1. 2000306. DOI: 10.1002/srin.202000306 21. Porcaro R. R., Faria G. L., Godefroid L. B., Apolonio G. R., Candido L. C., Pinto E. S. Microstructure and mechanical properties of a flash buttwelded pearlitic rail. Journal of Materials Processing Technology. 2019. Vol. 270. pp. 20–27. 22. Godefroid L. B., Moreira L. P., Vilela T. C. G., Faria G. L., Candido L. C., Pinto E. S. Effect of chemical composition and microstructure on the fatigue crack growth resistance of pearlitic steels for railroad application. Int. J. Fatigue. 2019. Vol. 120. pp. 241–53. 23. Porcaro R. R. et al. Microstructure and mechanical properties of a flash butt welded pearlitic rail. Journal of Materials Processing Technology. 2019. Vol. 270. pp. 20–27. 24. Offerman S. E., van Wilderen L. J. G. W., van Dijk N. H., Sietsma J., Rekveldt M. T., van der Zwaag S. In-situ study of pearlite nucleation and growth during isothermal austenite decomposition in nearly eutectoid steel. Acta Mater. 2003. Vol. 51. No. 13. pp. 3927–38. 25. García de Andrés C., Caballero F. G., Capdevila C., Álvarez L. F. Application of dilatometric analysis to the study of solid-solid phase transformations in steels. Mater Charact. 2002. Vol. 48. No. 1. pp. 101–11. 26. Marder A. R., Bramfitt B. L. The effect of morphology on the strength of pearlite. Metall Trans. A, Phys. Metall Mater. Sci. 1976. Vol. 7 (3). pp. 365–372. 27. Hyzak J. M., Bernstein I. M. The role of microstructure on the strength and toughness of fully pearlitic steels. Metall Trans. A, Phys. Metall Mater. Sci. 1976. Vol. 7 (8). pp. 1217–1224. 28. Tressia G., Sinatora A., Goldenstein H., Masoumi M. Improvement in the wear resistance of a hypereutectoid rail via heat treatment. Wear. 2020. No. 442–443. 203122. 29. Cezário A. L. S., Porcaro R. R., Faria G. L. Proposition of an empirical model for determination of critical temperatures during continuous cooling in heat affected zones of IF steels welded by the TIG Process. Soldag Insp. 2019. Vol. 24. pp. 1–14. 30. Balanovskiy A. E., Shtaiger M. G., Kondratyev V. V., Karlina A. I. Determination of rail steel structural elements via the method of atomic force microscopy. CIS Iron and Steel Review. 2022. Vol. 23. pp. 86–91. 31. Rezanov V. A., Martyushev N. V., Kukartsev V. V., Tynchenko V. S., Kukartsev V. A., Grinek A. V., Skiba V. Yu., Lyosin A. V., Karlina A. I. Study of melting methods by electric resistance welding of rails. Metals. 2022. Vol. 12. No. 12. p. 2135. 32. Elemessov K., Baskanbayeva D., Martyushev N. V., Skeeba V. Y., Gozbenko V. E., Karlina A. I. Change in the properties of rail steels during operation and reutilization of rails. Metals. 2023. Vol. 13. No. 6. p. 1043. |