Journals →  Obogashchenie Rud →  2024 →  #6 →  Back

BENEFICIATION PROCESSES
ArticleName Dynamics of particle motion during electrical separation
DOI 10.17580/or.2024.06.03
ArticleAuthor Pelevin A. E.
ArticleAuthorData

Ural State Mining University (Ekaterinburg, Russia)

Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor, a-pelevin@yandex.ru

Abstract

This article presents a mathematical model of the motion of ilmenite and quartz particles within an electric drum corona separator. The model incorporates specific formulas to calculate the forces exerted by the electrostatic field and the mirror image force acting on ilmenite and quartz particles as they exit the interelectrode space. A theoretical relationship between the specific electrical forces and particle size was established for both ilmenite and quartz, demonstrating that as particle size increases, the electrical forces acting on the particles decrease. This behavior was further studied in an in-depth analysis of ilmenite and quartz particle motion within a three-drum corona separator. At a drum speed of 140 rpm, quartz particles smaller than 0.07 mm were efficiently separated into the non-conductive fraction. With drum speeds reduced to 110 and 80 rpm, the size threshold of quartz in the non-conductive fraction increased to 0.12 and 0.15 mm, respectively. To remove quartz particles of 0.25 mm into tailings, the middling product has to be directed toward the non-conductive fraction. Theoretical calculations of particle dynamics allow the establishment of key process parameters and optimal settings for the separator based on the electrical properties and particle size distribution. These findings support the effective implementation of three-drum electric separators in industrial applications. However, to achieve more accurate predictions of drum corona-electrostatic separation results, the process model has to be further developed to account for the electrical flocculation of conducting and non-conducting particles of various sizes. This phenomenon is linked to the mutual attraction between positively charged ilmenite particles and negatively charged quartz particles.

keywords Electrical separation, drum separator, ilmenite, quartz, electrostatic force, mirror image force, particle size, electrical flocculation
References

1. Pelevin A. E. Increasing the efficiency of iron ore raw materials beneficiation by separation in an increased magnetic field. Chernye Metally. 2022. No. 1. pp. 31–36.
2. Guiral-Vega J. S., Pérez-Barnuevo L., Bouchard J., Ure A., Poulin É., Du Breuil C. Particle-based characterization and process modeling to comprehend the behavior of iron ores in drum-type wet low-intensity magnetic separation. Minerals Engineering. 2024. Vol. 206. DOI: 10.1016/j.mineng.2023.108509
3. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20.
4. Kotova O. B., Ozhogina E. G., Ponaryadov A. V. Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit). Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 632–641.
5. Yan X., Wang H., Peng Zh., Hao J., Zhang G., Xie W., He Ya. Triboelectric properties of ilmenite and quartz minerals and investigation of triboelectric separation of ilmenite ore. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 2. pp. 223–230.
6. Chelgani S. C., Neisiani A. A. Electrostatic separation. Dry mineral processing. Cham: Springer, 2022. pp. 91–123.
7. Urvantsev A. I., Shikhov N. V., Zaitsev G. V. Research results and practice of mineral beneficiation by electric separation. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2005. No. 5. pp. 37–51.
8. Gazaleeva G. I., Shikhov N. V., Sopina N. A., Mushketov A. A. Modern trends in the processing of titanium-containing ores. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2015. No. 12. pp. 30–36.
9. Bulatov K. V., Gazaleeva G. I., Shikhov N. V., Nazarenko L. N. Development of a beneficiation scheme for titanium-zirconium sands of the Shokash deposit, North Kazakhstan. Obogashchenie Rud. 2023. No. 6. pp. 3–8.
10. Liu J., Xue Z., Dong Zh., Yang X., Fu Ya., Man X., Lu D. Multiphysics modeling simulation and optimization of aerodynamic drum magnetic separator. Minerals. 2021. Vol. 11, Iss. 7. DOI: 10.3390/min11070680
11. Tang D., Wang F., Dai H., Lu M., Gong Zh. Influence of separation chamber shape in dry magnetic separator on the dispersion and separation of multiple magnetites. Minerals Engineering. 2021. Vol. 171, Iss. 1. DOI: 10.1016/j.mineng.2021.107130
12. Xie Sh., Hu Zh., Lu D., Zhao Ya. Dry permanent magnetic separator: Present status and future prospects. Minerals. 2022. Vol. 12, Iss. 10. DOI: 10.3390/min12101251
13. Revnivtsev V. I., Angelov A. I., Vereshchagin I. P., Ershov V. S., Losaberidze S. I., Morozov V. S., Pashin M. M. Physical foundations of electric separation. Moscow: Nedra, 1983. 271 p.
14. Olofinsky N. F. Electric beneficiation methods. Moscow: Nedra, 1977. 519 p.
15. Mesenyashin A. I. Electric separation in strong fields. Moscow: Nedra, 1978. 175 p.
16. Guiral-Vega J. S., Pérez-Barnuevo L., Bouchard J., Ure A., Poulin É., Du Breuil C. Particle-based characterization and process modeling to comprehend the behavior of iron ores in drum-type wet low-intensity magnetic separation. Minerals Engineering. 2024. Vol. 206. DOI: 10.1016/j.mineng.2023.108509
17. Guiral-Vega J., Bouchard J., Poulin É., Ure A., Du Breuil C., Pérez-Barnuevo L. A phenomenological model for particle kinetics in drum-type wet low-intensity magnetic separation. IFAC-PapersOnLine. 2022. Vol. 55, Iss. 21. pp. 25–30.
18. Xue Z., Wang Yu., Zheng X., Lu D., Sun Z., Hu Zh. Simulation of particle accumulation in high gradient magnetic separation based on static buildup model (SBM). Minerals Engineering. 2022. Vol. 175. DOI: 10.1016/j.mineng.2021.107290
19. Hu Zh., Liu J., Han L., Wang Yu., Lu D., Zheng X., Xue Z. Dynamic particle accumulation on a single wire in transverse field pulsating high gradient magnetic separator. Minerals Engineering. 2022. Vol. 183. DOI: 10.1016/j.mineng.2022.107609
20. Mohanraj G. T., Rahman M. R., Sharnappa Joladarashi et al. Design and fabrication of optimized magnetic roller for permanent roll magnetic separator (PRMS): Finite element method magnetics (FEMM) approach. Advanced Powder Technology. 2021. Vol. 32, Iss. 2. pp. 546–564.
21. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russkaya Kollektsiya, 2020. 376 p.
22. Doroshenko M. V., Bashlykova T. V. Technological properties of minerals: A handbook for technologists. Moscow: Teploenergetik, 2007. 296 p.
23. Kravets B. N. Special and combined methods of beneficiation. Moscow: Nedra, 1986. 304 p.
24. Mezenin A. O., Dmitriev S. V., Cherkasova M. V. Vibration effects in conditioning of metal powders. Vibroengineering PROCEDIA. 2019. Vol. 25. pp. 36–41.

25. Urvantsev A. I. Energy separation of mineral raw materials. Ekaterinburg: Fort Dialog-Iset', 2015. 224 p.
26. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 11-1. pp. 293–305.
27. Tereshchenko S. V., Shibaeva D. N., Kompanchenko A. A., Alekseeva S. A. Research of the influence of material composition and size of iron quartzites of the Olenegorsk deposit on the results of dry magnetic separation. Obogashchenie Rud. 2020. No. 6. pp. 15–20.
28. Shibaeva D. N., Tereshchenko S. V., Asanovich D. A., Shumilov P. A. On the need to classify rock mass fed to dry magnetic separation. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 603–612.
29. Terekhin E. P., Chueva E. A., Khvorostyanina V. I. Improvement of additional mineral processing technology to increase the quality of iron ore concentrate. Tekhnika i Tekhnologiya Gornogo Dela. 2023. No. 3. pp. 82–93.
30. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi Zhurnal. 2021. No. 11. pp. 75–83.
31. Pelevin A. E. Production of hematite concentrate from hematite-magnetite ore. Gornyi Informatsionno-analiticheskiy Byulleten'. 2020. No. 3-1. pp. 422–430.
32. Purushotham Sudikondala, Narasimha Mangadoddy, Sunil Kumar Tripathy, Rama Murthy Yanamandra. CFD modelling of the spiral concentrator at moderate feed solids content-prediction of particle segregation. Transactions of the Indian Institute of Metals. 2023. Vol. 1. DOI: 10.1007/s12666-023-03017-w
33. Pelevin A. E. Effects of magnetic flocculation on ironbearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20.

Language of full-text russian
Full content Buy
Back