Журналы →  Obogashchenie Rud →  2024 →  №6 →  Назад

ENVIRONMENT PROTECTION TECHNOLOGY
Название Development of a dust suppressant formulation for use in sub-zero temperatures
DOI 10.17580/or.2024.06.07
Автор Zyryanova O. V., Ivanova E. V., Gerasimov A. M.
Информация об авторе

Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)
Zyryanova O. V., Associate Professor, Candidate of Engineering Sciences, Associate Professor, Zyryanova_OV@pers.spmi.ru
Ivanova E. V., Master's Student, s222471@stud.spmi.ru
Gerasimov A. M., Associate Professor, Candidate of Engineering Sciences, gerasimov_am@pers.spmi.ru

Реферат

The increasing intensity of mineral extraction and processing leads to continuous advancements in the relevant technologies, alongside a rise in waste generation, which adversely affects the environment. In northern latitudes, landscapes affected by significant anthropogenic activity undergo profound changes, with ecosystems in these regions being particularly vulnerable due to their limited capacity for self-purification and recovery. This study focuses on the development of dust suppression formulations with a low freezing point that cause minimal environmental harm and retain their high dust-binding performance at sub-zero temperatures. Water-based dust-binding formulations, incorporating environmentally friendly additives, were designed and tested to control airborne dust in areas such as quarry roads and waste dumps. The physical, chemical, and operational characteristics of the dust suppressant formulations were thoroughly examined, including their freezing point, viscosity, density, and dust-binding capabilities. The study has established the relationship between modifying components and the low-temperature properties of water-based dust-suppressing emulsions. By incorporating a polyhydric alcohol as an antifreeze additive (0–20 %), a colloidstable emulsion was produced with a density of up to 1032 kg/m3, a viscosity of up to 14.5 x 10–6 m2/s, and a shelf life of up to 80 days. The polymer film formed on the dust-generating inorganic surface acts as a compact dust layer that dries within 24 hours. The formulation has a solidification temperature as low as –12 °C, making it suitable for winter dust suppression applications. Moreover, the primary ingredient of the formulation is water, making it both environmentally sustainable and cost-effective. The theoretical principles and experimental findings presented in this study are recommended for practical implementation in the mining industry.

Ключевые слова Mining, dust-generating surface, dust, dust suppression, biofuel production waste, polyvinyl alcohol, environmental safety
Библиографический список

1. Wang H., Cheng S., Wang H., He J., Fan L., Danilov A. S. Synthesis and properties of coal dust suppressant based on microalgae oil extraction. Fuel. 2023. Vol. 338. DOI: 10.1016/j.fuel.2022.127273
2. Borowski G., Smirnov Y., Ivanov A., Danilov A. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2022. Vol. 42, Iss. 8. pp. 2345–2356.
3. Cheng J., Zheng X., Lei Y., Luo W., Wang Y., Borowski M., Li X., Song W., Wang Z., Wang K. A compound binder of coal dust wetting and suppression for coal pile. Process Safety and Environmental Protection. 2021. Vol. 147. pp. 92–102.
4. Strizhenok A. V., Pashkevich M. A. Monitoring and assessment of dust emission from the surface of the ANOF-2 tailing dump of JSC «Apatit». Nauchnyi Vestnik Moskovskogo Gosudarstvennogo Gornogo Universiteta. 2012. No. 7. pp. 106–113.
5. Meshkov G. B., Petrenko I. E., Gubanov D. A. Russia's coal industry performance for January–June, 2023. Ugol'. 2023. No. 9. pp. 5–13.
6. Nazarenko M. Yu., Saltykova S. N. Obtaining semicoke from oil shale of the Leningrad deposit. Chernye Metally. 2022. No. 10. pp. 4–8.
7. Korshunov G. I., Spitsyn A. A., Bazhenova V. A. Development of the method for reducing the release of respirable dust fraction into the mine environment due to the reclamation of dusty sources. Bezopasnost' Truda v Promyshlennosti. 2022. No. 6. pp. 27–32.

8. Andrishunas А. М., Kleyn S. V. Fuel and energy enterprises as objects of risk-oriented sanitary-epidemiologic surveillance. Analiz Riska Zdorov'yu. 2021. No. 4. pp. 65–73.
9. Romanchenko S. B., Naganovskiy Y. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Zapiski Gornogo Instituta. 2021. Vol. 252. pp. 927–936.
10. Kornev A. V., Spitsyn A. A., Korshunov G. I., Bazhenova V. A. Preventing dust explosions in coal mines: Methods and current trends. Gornyi Informatsionno-analiticheskiy Byulleten'. 2023. No. 3. pp. 133–149.
11. Katsubin A. V., Kovshov S. V., Ilyashenko I. S., Marinina V. M. Study of organic compounds for reduction of the aerotechnogenic load from the coal mines highways. Bezopasnost' Truda v Promyshlennosti. 2020. No. 1. pp. 63–67.
12. Raymond A. J., Kendall A., DeJong J. T., Kavazanjian E., Woolley M. A., Martin K. K. Life cycle sustainability assessment of fugitive dust control methods. Journal of Construction Engineering and Management. 2021. Vol. 147, Iss. 3. DOI: 10.1061/(asce)co.1943-7862.0001993
13. Zhou Q., Qin B., Wang F., Wang H., Hou J., Wang Z. Effects of droplet formation patterns on the atomization characteristics of a dust removal spray in a coal cutter. Powder Technology. 2019. Vol. 344. pp. 570–580.
14. Ochelebe I., Nkebem G. E., Kudamnya E. A. Assessment of heavy metals concentration and enrichment levels in soils around quarries and barite mine sites in part of Akamkpa and Biase area, Southeastern Nigeria. Journal of Geoscience and Environment Protection. 2020. Vol. 8, No. 8. DOI: 10.4236/gep.2020.88009
15. Zhou Q., Qin B. Coal dust suppression based on water mediums: A review of technologies and influencing factors. Fuel. 2021. Vol. 302. DOI: 10.1016/j.fuel.2021.121196
16. Zhao Z., Chang P., Xu G., Xie Q., Ghosh A. Comparison of static tests and dynamic tests for coal dust surfactants evaluation: A review. Fuel. 2022. Vol. 330. DOI: 10.1016/j.fuel.2022.125625
17. Liu G., Hou M. Advanced technologies on mine dust prevention and control. Applied Sciences. 2023. Vol. 13. DOI: 10.3390/app13084869
18. Smirnyakov V. V., Rodionov V. A., Smirnyakova V. V., Orlov F. A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Zapiski Gornogo Instituta. 2022. Vol. 253. pp. 71–81.
19. Chen Y., Xu G., Huang J., Eksteen J., Liu X., Zhao Z. Characterization of coal particles wettability in surfactant
solution by using four laboratory static tests. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019. Vol. 567. pp. 304–312.
20. Pisarev V. S., Basargin A. A. Methods of dust control on open-cast mine. Interekspo Geo-Sibir'. 2020. No. 1. pp. 15–21.
21. Ivanov A. V., Smirnov Yu. D., Chupin S. A. Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces. Zapiski Gornogo Instituta. 2021. Vol. 251. pp. 757–766.
22. Ekwere A. S., Edet B. B. Temporal variations of heavy metals in sediment, soil and dust particulates across the rock quarrying districts of the Oban massif, Southeastern Nigeria. Environmental Nanotechnology, Monitoring and Management. 2021. Vol. 15. DOI: 10.1016/j.enmm.2021.100431
23. Zhu S., Zhao Y., Hu X., Wu M., Cheng W., Fan Y., Song C., Tang X. Study on preparation and properties of mineral surfactant — microbial dust suppressant. Powder Technology. 2021. Vol. 383. pp. 233–243.
24. Zhang M., Zhao Y.-Y., Hu X.-M., Feng Y., Cheng W., Liu W., Geng Z., Wang Q.-S., Dong Y. Study on the adsorption and dust suppression mechanism of urease-producing bacteria on coal dust. Powder Technology. 2022. Vol. 409. DOI: 10.1016/j.powtec.2022.117801
25. Wu M., Hu X., Zhang Q., Zhao Y., Sun J., Cheng W., Fan Y., Zhu S., Lu W., Song C. Preparation and performance evaluation of environment-friendly biological dust suppressant. Journal of Cleaner Production. 2020. Vol. 273. DOI: 10.1016/j.jclepro.2020.123162
26. Tsogt B., Oh S.-Y. Preparations and application of dust suppressants from biomass-based materials. Journal of the Air and Waste Management Association. 2021. Vol. 71. pp. 1386–1396.
27. Liu B., Zhang Yu., Zhang Ya., Liu E., Xu K., Tian Z., Chen J., Meng X., Yan K. Study on resource utilization of composite powder suppressor prepared from acrylic fiber waste sludge. Journal of Cleaner Production. 2021. Vol. 291. DOI: 10.1016/j.jclepro.2021.125914
28. Zhang Y., Wu G., Cai L., Zhang J., Wei X., Wang X. Study on suppression of coal dust explosion by superfine NaHCO3/shell powder composite suppressant. Powder Technology. 2021. Vol. 394. pp. 35–43.
29. Nevolin D. G., Koshkarov Vl. E., Koshkarov V. E. Research and development of technology for de-dusting career roads and technogenic massifs by preventive emulsions of heavy oil residues. Ekaterinburg: UrSURT, 2020. 189 p.
30. Gulia S., Goyal P., Goyal S. K., Kumar R. Resuspension of road dust: contribution, assessment and control through dust suppressants — A review. International Journal of Environmental Science and Technology. 2019. Vol. 16. pp. 1717–1728.
31. Colinet J., Halldin C. N., Schall J. Best practices for dust control in coal mining. 2ed. Pittsburgh PA: DHHS, NIOSH, 2021. 183 p.
32. Fan T., Liu Z., Ouyang J., Li M. Synthesis and performance characterization of an efficient coal dust suppressant for synergistic combustion with coal dust. Journal of Environmental Management. 2020. Vol. 269. DOI: 10.1016/j.jenvman.2020.110854
33. Pashkevich M. A., Danilov A. S. Ecological security and sustainability. Zapiski Gornogo Instituta. 2023. Vol. 260. pp. 153–154.
34. Pat. RU 2634146 Russian Federation.
35. Sharov N. A., Dudayev R. R., Krishchuk D. I., Liskova M. Yu. Dust suppression methods in coal mines of the Far North. Nedropolzovanie. 2019. No. 2. pp. 184–200.
36. Zyryanova O. V., Kireeva E. V., Abramova A. E. Development of dust-suppressing compositions to ensure environmental safety in open-pit mining. Ekologiya i Promyshlennost' Rossii. 2022. No. 26. pp. 22–28.
37. Pat. RU 2761229 Russian Federation.

Language of full-text русский
Полный текст статьи Получить
Назад