ArticleName |
Механическая усталость
и циклическая устойчивость конструкций из тонкой сверхупругой TiNi-проволоки с фазовым составом,
контролируемым синхротронным излучением |
ArticleAuthorData |
Институт проблем химико-энергетических технологий СО РАН, Бийск, Россия1 ; Национальный исследовательский Томский государственный университет, Томск, Россия2
Е. С. Марченко, ведущий научный сотрудник1, заведующая лабораторией медицинских сплавов и имплантатов с памятью формы2, докт. физ.-мат. наук, эл. почта: 89138641814@mail.ru
Национальный исследовательский Томский государственный университет, Томск, Россия
Г. А. Байгонакова, старший научный сотрудник, канд. физ.-мат. наук М. А. Ковалева, аспирант, инженер-исследователь Т. В. Чайковская, профессор, докт. физ.-мат. наук |
References |
1. Zhu J., Zeng Q., Fu T. An updated review on TiNi alloy for bio medical applications // Corros. Rev. 2019. Vol. 37, Iss. 6. P. 539–552. 2. Zhang L., Zhang Y. Q., Jiang Y. H., Zhou R. Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering // J. Alloy Compd. 2015. Vol. 644. P. 513–522. 3. Heller L., Seiner H., Sittner P., Sedlаk P. et al. On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi // Int. J. Plast. 2018. Vol. 111. P. 53–71. 4. de Vasconcellos L. M. R., Rodarte Y., do Prado R. F., de Vasconcellos L. G. O. et al. Porous titanium by powder metallurgy for biomedical application: characterization, cell citotoxity and in vivo tests of osseointegration // Biomed. Eng. 2012. Vol. 1. P. 47–74. 5. Es-Souni M., Es-Souni M., Fischer-Brandies H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications // Anal. Bioanal. Chem. 2005. Vol. 381. P. 557–567. 6. Li C. Y., Yang X. J., Zhang L. Y., Chen M. F. et al. In vivo histological evaluation of bioactive NiTi alloy after 2 years implantation // Mater. Sci. Eng. 2007. Vol. 27. P. 122–126. 7. Muhamedov M., Kulbakin D., Gunther V., Choynzonov E. et al. Sparing surgery with the use of TiNi-based endografts in larynx cancer patients // J. Surg. Oncol. 2015. Vol. 111. P. 231–236. 8. Shtin V., Novikov V., Chekalkin T., Gunther V. et al. Repair of orbital post-traumatic wall defects by custom-made TiNi mesh endografts // J. Funct. Biomater. 2019. Vol. 10. P. 1–9. 9. Topol`nickij E., Chekalkin T., Marchenko E., Yasenchuk Yu. et al. Evaluation of clinical performance of TiNi-based implants used in chest wall repair after resection for malignant tumors // J. Funct. Biomater. 2021. Vol. 12. 60.
10. Marchenko E., Baigonakova G., Yasenchuk Yu., Chekalkin T. Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol // Ceram. Int. 2022. Vol. 48, Iss. 22. P. 33514-33523. 11. Bansiddhi A., Sargeant T., Stupp S., Dunand D. Porous NiTi for bone implants: A review // Acta. Biomater. 2008. Vol. 4. P.773–782. 12. Sakamoto Y., Hirano K., Iida O., Soga Y. et al. Five-year outcomes of self-expanding nitinol stent implantation for chronic total occlusion of the superficial femoral and proximal popliteal artery // Catheter. Cardiovasc. Interv. 2013. Vol. 82. P. 251–256. 13. Song C. History and current situation of shape memory alloys devices for minimally invasive surgery // Open. Med. Dev. J. 2010. Vol. 2. P. 24–31. 14. Jenko M., Godec M., Kocijan A., Rudolf R. et al. A new route to biocompatible Nitinol based on a rapid treatment with H2/O2 gaseous plasma // Appl. Surf. Sci. 2019. Vol. 473. P. 976–984. 15. Yasenchuk Yu., Marchenko E., Gunther S., Baigonakova G. et al. Softening effect during cyclic stretching of titanium nickelide knitwear // Mater. 2021. Vol. 27. P. 459–481. 16. Chen Y., Tyc O., Molnarova O., Heller L. et al. Tensile deformation of superelastic NiTi wires in wide temperature and microstructure ranges // Shap. Mem. Superelasticity. 2019. Vol. 5. P. 42–62. 17. Marandi L., Sen I. In-vitro mechanical behavior and high cycle fatigue characteristics of NiTi-based shape memory alloy wire // Int. J. Fatigue. 2021. Vol. 148. 106226. 18. Zhu X., Zhang X., Qian M. Reversible elastocaloric effects with small hysteresis in nanocrystalline Ni – Ti microwires // AIP Adv. 2018. Vol. 8. 125002. 19. Mahtabi M., Shamsaei N., Mitchell M. Fatigue of Nitinol: The state-of-the-art and ongoing challenges // J. Mech. Behav. Biomed. Mater. 2015. Vol. 50. P. 228–254. 20. Ammar O., Haddar N., Dieng L. Experimental investigation of the pseudoelastic behaviour of NiTi wires under strain- and stress-controlled cyclic tensile loadings // Intermet. 2017. Vol. 81. P. 52–61. 21. Morch A., Astruc L., Witz J., Lesaffre F. et al. Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites // J. Mech. Phys. Solids. 2019. Vol. 27. P. 47–61. 22. Baigonakova G., Marchenko E., Chekalkin T., Kang J. et al. Influence of silver addition on structure, martensite trans formations and mechanical properties of TiNiAg alloy wires for biomedical application // Mater. 2020. Vol. 13. P. 1–11. 23. Li S., Mao Ch., Li H., Zhao Ya. Mechanical properties and theoretical modeling of self-centering shape memory alloy pseudo-rubber // S. Mater. Struct. 2011. Vol. 20. 115008. 24. Qin Y. Applications of advanced technologies in the development of functional medical textile materials // Med. Tex. Mater. 2016. P. 55–70. 25. Robertson S., Pelton A., Ritchie R. Mechanical fatigue and fracture of Nitinol // Int. Mater. Rev. 2012. Vol. 57. P. 1–37. 26. Svetogorov R., Dorovatovskii P., Lazarenko V. Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov Synchrotron Radiation Source // Cryst. Res. Technol. 2020. Vol. 55, Iss. 5. 1900184. 27. Hubbard C., Evans E., Smith D. The reference intensity ratio, I/Ic, for computer simulated powder patterns // J. Appl. Cryst. 1976. Vol. 9. P. 169–174. 28. Robles R. R., Gómez D. L., Nieto F. A. Cooperative formation flying control laws for automatic air to air refuelling // EUCASS. 2019. 8. DOI: 10.13140/RG.2.2.32098.58560 29. Ravandi M., Moradi A., Ahlquist S., Banu M. Numerical simulation of the mechanical behavior of a weft-knitted carbon fiber composite under tensile loading // Polym. 2022. Vol. 14. 451. 30. Otsuka K., Ren X. Physical metallurgy of Ti – Ni-based shape memory alloys // Prog. Mater. Sci. 2005. Vol. 50. P. 511–678. |