Journals →  Обогащение руд →  2025 →  #3 →  Back

ОБОГАТИТЕЛЬНЫЕ ПРОЦЕССЫ
ArticleName Изучение влияния ионного состава пульпы на изменение краевого угла смачивания поверхности шеелита при его флотации в условиях замкнутого водооборота
DOI 10.17580/or.2025.03.05
ArticleAuthor Уразова Ю. В., Тиунов М. Ю., Чикин А. Ю., Войлошников Г. И.
ArticleAuthorData

АО «Иргиредмет», Иркутск, РФ

Уразова Ю. В., младший научный сотрудник, urazova@irgiredmet.ru

Тиунов М. Ю., зав. группой, tmu@irgiredmet.ru

Войлошников Г. И., заместитель генерального директора, д-р техн. наук, профессор

 

Иркутский государственный университет, Иркутск, РФ

Чикин А. Ю., профессор, д-р техн. наук, anchik53@mail.ru

Abstract

Представлено исследование, посвященное сравнительному анализу изменения краевого угла смачивания в условиях флотационного обогащения в открытом цикле, замкнутом цикле с накоплением основных препятствующих примесей и с кондиционированием оборотной воды. Математическое описание связи краевого угла смачивания с временем контакта произведено методом полиномиальной регрессии второго порядка. Представлены данные изменения этого угла при отсутствии реагента-собирателя и различных его концентрациях на минеральной поверхности. Выявлены количественные закономерности изменения угла смачивания в зависимости от условий водооборота, концентрации реагента-собирателя (таллового масла) и времени контакта. Полученная математическая модель адекватно описывает экспериментальные зависимости, о чем свидетельствуют высокие значения коэффициентов детерминации R2 (от 0,98 до 1,0).

keywords Краевой угол смачивания, время контакта, флотация, флотокомплекс, препятствующие примеси, кондиционирование, полиномиальная регрессия
References

1. Bogdanov O. S., Maksimov I. I., Podnek A. K., Yanis N. A. Theory and technology of ore flotation. Moscow: Nedra, 1990. 363 p.
2. Melik-Gaikazyan V. I., Abramov A. A., Rubinshtein Yu. B., et al. Methods of studying the flotation process. Moscow: Nedra, 1990. 301 p.
3. Abramov A. A. Flotation beneficiation methods. Moscow: Gornaya Kniga, 2018. 600 p.
4. Vargha-Butler E. I., Absolom D. R., Neumann A. W., Canmet H. H. E. Characterizations of coal by contact-angle and surface-tension measurements. Interfacial phenomena in coal technology. CRC Press, 1988. pp. 33–84.
5. Drelich J., Laskowski J. S., Pawuk M. Improved sample preparation and surface analysis methodology for contact angle measurements on coal (heterogeneous) surfaces. Coal Preparation. 2000. Vol. 21, Iss. 3. pp. 247–275.
6. Arif M., Awan F. U. R., Zhang H., Hosseini M. Coal wettability: A holistic overview of the data sets, influencing factors, and knowledge gaps. Energy & Fuels. 2024. Vol. 38, Iss. 16. pp. 15069–15084.
7. Murata T. Wettability of coal estimated from the contact angle. Fuel. 1981. Vol. 60, Iss. 8. pp. 744–746.
8. Danilov V. E., Korolev E. V., Ayzenshtadt A. M. Measurement of wetting angles for powders by sessile drop method. Fizika i Khimiya Obrabotki Materialov. 2020. No. 6. pp. 75–82.
9. Patrakov Yu. F., Semenova S. A. Determination of the wetting angle using gas bubble method. Zavodskaya Laboratoriya. Diagnostika Materialov. 2021. Vol. 87, No. 4. pp. 38–42.
10. Urazova Yu. V., Tiunov M. Yu., Chikin A. Yu. Flotation enrichment of tungsten ores in conditions of closed water circulation. Vestnik Zabaykalskogo Gosudarstvennogo Universiteta. 2023. Vol. 29, No. 2. pp. 70–78.
11. Kondrat′ev S. A. Collectability and selectivity of flotation agent. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2021. No. 3. pp. 133–147.
12. Zhang W., Honaker R., Groppo J. Flotation of monazite in the presence of calcite Part I: Calcium ion effects on the adsorption of hydroxamic acid. Minerals Engineering. 2017. Vol. 100. pp. 40–48.
13. Sun K., Nguyen C. V., Nguyen N., Nguyen A. V. Flotation surface chemistry of water-soluble salt minerals: from experimental results to new perspectives. Advances in Colloid and Interface Science. 2022. Vol. 309. DOI: 10.1016/j.cis.2022.102775
14. Petrov A. Yu. Analysis of models of objects of various subject areas, reducible to a polynomial model with degrees of variables in modulus not exceeding unit. Proc. of the III International scientific and practical conference «Physical and mathematical sciences and information technologies: Problems and development trends». Novosibirsk, June 11, 2012. pp. 33–37.
15. Polynomial Features URL: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html (accessed: 10.06.2025).
16. Mukai S., Kanō G., Wakamatsu T. Effects of collector ion concentrations and hydrogen ion concentrations on the floatability of non-sulphide minerals. Memoirs of the Faculty of Engineering, Kyoto University. 1962. Vol. 24, No. 2. pp. 270–290.
17. Tian M., Gao Z., Sun W., Han H., Sun L., Hu Y. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. Journal of Colloid and Interface Science. 2018. Vol. 529. pp. 150–160.
18. Wei Zh., Sun W., Han H., Gui X., Xing Ya. Flotation chemistry of scheelite and its practice: A comprehensive review. Minerals Engineering. 2023. Vol. 204. DOI: 10.1016/j.mineng.2023.108404

Language of full-text russian
Full content Buy
Back