Journals →  Obogashchenie Rud →  2025 →  #3 →  Back

ORE PREPARATION
ArticleName The influence of energy exposure on the strength characteristics of gold-bearing ore
DOI 10.17580/or.2025.03.01
ArticleAuthor Aleksandrova T. N., Aburova V. A., Nikolaeva N. V., Struk G. V.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)
Aleksandrova T. N., Head of Chair, Doctor of Engineering Sciences, Corresponding Member of the Russian Academy of Sciences, Professor, Aleksandrova_TN@pers.spmi.ru
Aburova V. A., Postgraduate Student, aburovaleria@gmail.com
Nikolaeva N. V., Associate Professor, Candidate of Engineering Sciences, Associate Professor, nadegdaspb@mail.ru
Struk G. V., Postgraduate Student, s245018@stud.spmi.ru

Abstract

The high energy consumption associated with mineral processing has driven interest in methods that can reduce energy demands during ore preparation. One promising approach involves the use of energy-based treatments, such as microwave exposure, to alter the mechanical properties of raw mineral materials. This study investigates the potential for microwave radiation to modify the strength characteristics of sedimentary gold-bearing ore, with an average gold content of 2–3 g/t. The treatment exploits the differential response of ore and gangue minerals to microwave energy, which leads to the formation of micro- and macrocracks. These internal fractures contribute to a reduction in the material’s strength parameters. Prior to treatment, the ore was classified as moderately hard, with a strength criterion value of k = 37.9, and exhibited low abrasiveness (AI = 0.0555 g). Microwave processing was carried out at a power level of 600 W for 2 minutes, parameters selected to enable standardized testing using the drop weight method and to determine the Bond abrasiveness index. Post-treatment results showed a slight decrease in abrasiveness to AI = 0.0373 g (a reduction of 0.0182 g). More significantly, the strength criterion increased to k = 43.6, a shift of 5.7 units, indicating a structural weakening of the ore. The specific energy consumption for this process was 1.10 kWh/t. As a result of the treatment, the ore’s strength classification shifted from moderately hard to medium-hard. Taking into account the specific energy used for microwave exposure, the overall difference in total energy consumption before and after treatment (SCSE + microwave) amounted to 0.12 kW·h/t.
This research was supported by the Russian Science Foundation (grant No. 23-47-00109).

keywords Drop weight test, abrasiveness, ore preparation, strength properties, microwave processing, thermal treatment, gold
References

1. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo Instituta. 2023. Vol. 259. pp. 95–111.
2. Gordeev D. V., Fomenko I. V., Shneerson Ya. M., Petrov G. V. Processing of carbonaceous gold-containing concentrates by autoclave oxidation with the addition of nitric acid as a secondary oxidizer. Obogashchenie Rud. 2023. No. 5. pp. 18–24.
3. Gordeev D. V., Petrov G. V., Khasanov А. V., Severinova О. V. Review of modern processing technologies of refractory gold ores and concentrates with use of nitric acid. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2022. Vol. 333, No. 1. pp. 214–224.
4. Nikolaeva N. V., Kallaev I. T. Features of copper-molybdenum ore grinding. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 52–66.
5. Efimov D. A., Gospodarikov A. P. Technical and technological aspects of the use of Reuleaux triangular profile rolls in crushing units in the ore processing plant. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 10-2. pp. 17–26.
6. Ivanik S. A., Ilyukhin D. A. Flotation extraction of elemental sulfur from gold-bearing cakes. Zapiski Gornogo Instituta. 2020. Vol. 242. pp. 202–208.
7. Yakovleva T. A., Romashev A. O., Mashevsky G. N. Enhancing flotation beneficiation efficiency of complex ores using ionometry methods. Gornye Nauki i Tekhnologii. 2024. Vol. 9, No. 2. pp. 146–157.
8. Fomin A. V., Khokhulya M. S. Development and industrial adaptation of a resource-saving technology for magnetite–hematite concentrate production from manmade iron-ore feedstock. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 80–93.

9. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield. Zapiski Gornogo Instituta. 2020. Vol. 242. pp. 218–227.
10. Brichkin V. N., Kurtenkov R. V., Maksimova R. I. Bormotov I. S. Regeneration and recycling of lime component in complex processing of kaolin raw materials. Obogashchenie Rud. 2024. No. 4. pp. 32–38.
11. Kuskov V. B., Iliin E. S. Effect of die taper angles, binder amount and type on strength characteristics of extrusion briquettes. Chernye Metally. 2025. No. 1. pp. 4–9.
12. Sekisov A. G., Rasskazova A. V., Konareva T. G. Combined geotechnological schemes for the development of gold-bearing technogenic mineral formations. Gornyi Informatsionno-analiticheskiy Byulleten'. 2023. No. 12-2. pp. 116–128.
13. Batchelor A. R., Jones D. A., Plint S., Kingman S. W. Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment. Minerals Engineering. 2016. Vol. 94. pp. 61–75.
14. Chanturiya V. A., Bunin I. Z. Advances in pulsed power mineral processing technologies. Minerals. 2022. Vol. 12, Iss. 9. DOI: 10.3390/min12091177.
15. Razmakhnin K. K., Khatkova A. N., Shumilova L. V. Increasing the quality of zeolite-bearing rocks from Eastern Transbaikalia by applying directed energy. Zapiski Gornogo Instituta. 2024. Vol. 265. pp. 129–139.
16. Kondratiev S. A., Rostovtsev V. I., Kovalenko K. A. Ecology-friendly technologies for integrated processing of rebellious ore and process waste. Gornyi Zhurnal. 2020. No. 5. pp. 39–46.
17. Burov V. E. Capabilities of sonochemistry in flotation of ore minerals. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 36–51.
18. Bochkarev G. R., Rostovtsev V. I. Energy deposition in processing of mineral raw materials. Fundamentalnye i Prikladnye Voprosy Gornykh Nauk. 2014. Vol. 1, No. 2. pp. 199–206.
19. Adewuyi S. O., Ahmed H. A. M., Ahmed H. M. A. Methods of ore pretreatment for comminution energy reduction. Minerals. 2020. Vol. 10, Iss. 5. DOI: 10.3390/min10050423
20. Wikedzi A., Saquran S., Leißner T., Peuker U. A., Mütze T. Breakage characterization of gold ore components. Minerals Engineering. 2020. Vol. 151. DOI: 10.1016/j.mineng.2020.106314
21. Fernandes I. B., Rudolph M., Hassanzadeh A., Bachmann K., Meskers C., Peuker U., Reuter M. A. The quantification of entropy for multicomponent systems: Application to microwave-assisted comminution. Minerals Engineering. 2021. Vol. 170. DOI: 10.1016/j.mineng.2021.107016
22. Aleksandrova Т. N., Afanasova A. V., Aburova V. A. «Invisible» noble metals in carbonaceous rocks and beneficiation products: feasibility of detection and coarsening. Gornye Nauki i Tekhnologii. 2024. Vol. 9, No. 3. pp. 231–242.
23. Afanasova A. V., Aburova V. A. Growth of low-dimensional structure noble metals in carbonaceous materials under microwave treatment. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 20–35.
24. Amankwah R. K., Ofori-Sarpong G. Microwave roasting of flash flotation concentrate containing pyrite, arsenopyrite and carbonaceous matter. Minerals Engineering. 2020. Vol. 151. DOI: 10.1016/j.mineng.2020.106312
25. Gao M.-Z., Yang B.-G., Xie J., Ye S.-Q., Liu J.-J., Liu Y.-T., Tang R.-F., Hao H.-C., Wang X., Wen X.-Y., Zhou X.-M. The mechanism of microwave rock breaking and its potential application to rock-breaking technology in drilling. Petroleum Science. 2022. Vol. 19, Iss. 3. pp. 1110–1124.
26. Pressacco M., Kangas J. J. J., Saksala T. Numerical modelling of microwave irradiated rock fracture. Minerals Engineering. 2023. Vol. 203. DOI: 10.1016/j.mineng. 2023.108318
27. Haque K. E. Microwave energy for mineral treatment processes — A brief review. International Journal of Mineral Processing. 1999. Vol. 57, No. 1. pp. 1–24.
28. Li H., Long H., Zhang L., Yin S., Li S., Zhu F., Xie H. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings. Journal of Hazardous Materials. 2020. Vol. 384. DOI: 10.1016/j. jhazmat.2019.121456
29. Kingman S. W., Jackson K., Cumbane A., Bradshaw S. M., Rowson N. A., Greenwood R. Recent developments in microwave-assisted comminution. International Journal of Mineral Processing. 2004. Vol. 74, No. 1. pp. 71–83.
30. Batchelor A. R., Buttress A. J., Jones D. A., Katrib J., Way D., Chenje T., Stoll D., Dodds C., Kingman S. W. Towards large scale microwave treatment of ores: Part 2 – Metallurgical testing. Minerals Engineering. 2017. Vol. 111. pp. 5–24.
31. Fang X., Peng Z., Yin T., Rao M., Li G. Microwave treatment of copper-nickel sulfide ore for promotion of grinding and flotation. Metals. 2024. Vol. 14, No. 5. DOI: 10.3390/met14050565
32. Rizmanoski V. The effect of microwave pretreatment on impact breakage of copper ore. Minerals Engineering. 2011. Vol. 24, No. 14. pp. 1609–1618.
33. Zuo W., Shi F. A T10-based method for evaluation of ore pre-weakening and energy reduction. Minerals Engineering. 2015. Vol. 79. pp. 212–219.
34. Matei V., Bailey C. W, Morrell S. A new way of representing A and b parameters from JK Drop-Weight and SMC tests: the «SCSE». Proc. of the SAG conference. Vancouver, Canada, September 20–24, 2015. 12 p.
35. Faramarzi F., Kanchibotla S. S., Morrison R. Simulating the impact of ore competence variability on process performance – Case study of a large copper mine. Proc. of the SAG conference. Vancouver, Canada, September 22–26, 2019. 10 p.
36. Teimoori K., Cooper R. Multiphysics study of microwave irradiation effects on rock breakage system. International Journal of Rock Mechanics and Mining Sciences. 2021. Vol. 140. DOI: 10.1016/j.ijrmms.2020.104586
37. Li Q., Li X., Yin T. Effect of microwave heating on fracture behavior of granite: An experimental investigation. Engineering Fracture Mechanics. 2021. Vol. 250. DOI: 10.1016/j.engfracmech.2021.107758
38. Tino A. A. A., Barrios G. K. P., Tavares L. M. Insights into metal wear and particle breakage using Bond’s abrasiveness test. Minerals Engineering. 2024. Vol. 210. DOI: 10.1016/j.mineng.2024.108672

Language of full-text russian
Full content Buy
Back