Journals →  Eurasian mining →  2025 →  #1 →  Back

PHYSICS OF ROCKS AND PROCESSES
ArticleName Assessment of height determination accuracy in comparison of measurements from the Global Navigation Satellite Systems and high-precision levelling at geodynamic test site
DOI 10.17580/em.2025.01.10
ArticleAuthor Makhmetova G. N., Orynbassarova E. О., Kassymkanova Kh. М., Kulibaba S. B.
ArticleAuthorData

Satbayev University, Almaty, Kazakhstan

Makhmetova G. N., Candidate for a Doctor’s Degree
Orynbassarova E. О., Executive Officer, Doctor PhD
Kassymkanova Kh. М., Professor, Doctor of Engineering Sciences, Professor, k.kassymkanova@satbayev.university

 

Academician Melnikov Research Institute of Comprehensive Exploitation of Mineral Resources—IPKON, Russian Academy of Sciences, Moscow, Russia
Kulibaba S. B., Leading Researcher, Doctor of Engineering Sciences, Professor

Abstract

The article compares the height determination results from the satellite measurements and high-precision levelling at the geodynamic test site at the Zhezkazgan deposit in 2021–2023. It is shown that the geometric levelling and satellite navigation systems have different initial height reference surfaces which generally non-coincide and are non-parallel. Nevertheless, the created structure of the satellite and levelling network at the geodynamic test site, as well as the adopted observation procedure enable accurate height determination during geodynamic monitoring.

The study was supported the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan, Grant No. BR21882366.

keywords High-precision levelling, global navigation satellite systems, heights
References

1. Ovchinnikova N. G., Medvedkov D. A. Global navigation satellite systems as an important component of land-cadastral works. Economy and Ecology of Territorial Educations. 2018. Vol. 2, No. 1(4). pp. 77–87.
2. Bikbulatova G. G., Kupreeva E. N. Influence of the earth’s gravitational field on satellite measurements. Electronic Journal of Omsk SAU. 2022. No. 2 (29).
3. Grishko S. V., Bukin V. G. Joint use of the results of satellite definitions and high-precision leveling in geodynamic monitoring. Izvestiya vysshikh uchebnykh zavedeniy. Gornyi zhurnal. 2017. No. 7. pp. 50–56.
4. Magnus Ericsson, Olof Löf Mining’s contribution to national economies between 1996 and 2016. Gornaya promyshlennost. 2019. No. 6. pp. 84–93.
5. Trubetskoy K. N., Kaplunov D. R., Rylnikova M. V. et al. Resource-Saving and Resource-Reproducing Technologies of Integrated Development of Mineral Resources. Moscow : IPKON RAN, 2012. 206 p.
6. Bahayeva S. P., Т. В. Mihaylova T. V. Validation of the accuracy of surveying control over condition of earth dams at liquid waste ponds at mines. Journal of Mining Science. 2017. Vol. 53, No. 2. pp. 396–407.
7. Langley R. B., Teunissen P. J., Montenbruck O. Introduction to GNSS. Springer Handbook of Global Navigation Satellite Systems. 2017. pp 3–23. DOI: 10.1007/978-3-319-42928-1_1
8. Duan H., Zhang Y., Xing L., Liang W. GNSS gravity leveling. Pure and Applied Geophysics. 2024. DOI: 10.1007/s00024-024-03492-2
9. Mustafin M., Moussa H. Accurate height determination in uneven terrains with integration of global navigation satellite system technology and geometric levelling: A case study in Lebanon. Computation. 2024. Vol. 12, Iss. 3. ID 58.
10. Baltiyeva A., Orynbassarova E., Zharaspaev M., Akhmetov R. Studying sinkholes of the earth’s surface involving radar satellite interferometry in terms of Zhezkazgan field, Kazakhstan. Mining of Mineral Deposits. 2023. Vol. 17(4). pp. 61–74.
11. Orynbassarova E. O., Akhmetov R. A., Baltieva A. A., Yerzhankyzy A. Determination of the optimal method for post-processing of GNSS-measurements under geodynamic monitoring conditions. Mining Journal of Kazakhstan. 2023. No. 6. pp. 32–37.
12. IGS Central Bureau NASA Jet Propulsion Laboratory California Institute of Technology. Available at: http://www.igs.org/products (accessed: 11.02.2025).
13. Herring T. A., King R. W., Floyd M. A., McClusky S. C. Introduction to GAMIT/GLOBK. Department of Earth, Atmospheric, and Planetary Sciences. Massachusetts Institute of Technology. 2018. Available at: http://geoweb.mit.edu/gg/Intro_GG.pdf (accessed: 11.02.2025).
14. Ustavich G. A., Sholomitskiy A. A., Isabekova K. S., Kuderinov S. M., Tutanova M. S. Geodetic justification of induced geodynamics test site to determine deformation condition of earth’s surface at location of testing boreholes of the Semipalatinsk Test Site. Vestnik SGUTiT. 2024. Vol. 29, No. 3. pp. 43–59.
15. Approval of Levelling Guide. Ministry of Digital Development, Innovation and Aerospace Industry of the Republic of Kazakhstan, No. 94/NK as of 17 March 2023. Available at: https://adilet.zan.kz/rus/docs/V2300032090/info (accessed: 11.02.2025).
16. Yun A. B. Development and validation of geotechnical system design for integrated mining of the Zhezkazgan deposit with replenishment of exhausted mine capacities : Theses of Dissertation of Doctor of Engineering Sciences. Moscow : NUST MISIS, 2016.
17. Kulibaba S. B., Rozhko M. D. On the stability of the main benchmarks of observation stations during the under-mining of the earth’s surface. Izvestija Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2023. No. 3. pp. 214–222.
18. Wang Z., Li W., Zhao Y. et al. Monitoring ground displacement in mining areas with time- series interferometric synthetic aperture radar by integrating persistent scatterer/slowly decoherent filtering phase/distributed scatterer approaches based on signal-to-noise ratio. Applied Sciences. 2023. Vol. 13, Iss. 15. ID 8695.

Full content Assessment of height determination accuracy in comparison of measurements from the Global Navigation Satellite Systems and high-precision levelling at geodynamic test site
Back